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Abstract

Nucleosomes comprise the most basic repeating unit of chromatin and provide hubs for

the regulation of DNA transcription, replication and repair. ATPase chromatin 

remodelling complexes establish nucleosome occupancy, positioning and structure in a

dynamic fashion to allow fine-tuning of protein-DNA interactions. The ISWI and CHD 

families of remodelers possess the ability to sample DNA linker length between 

nucleosomes and space nucleosomes evenly. How these spacing remodelers combine

their functions to maintain phasing of nucleosomal arrays, and re-organise these arrays

during development remains poorly understood. Furthermore the relationship between 

nucleosomal array structure and transcriptional regulation is unclear. 

Dictyostelium discoideum provides a complex chromatin environment and remodeler 

repertoire, while retaining a compact genome and ease of genetic manipulation. Thus 

we have utilized this model to generate remodeler null mutants, and double mutants to 

observe phenotypic effects and interactions. We further compiled comprehensive 

nucleosome mapping and RNA sequencing data sets for all spacing remodelers in 

Dictyostelium. Bioinformatic analysis of these data provide novel insights into 

remodeler functions, and help to establish a paradigm to explain the relationship 

between remodeler-mediated chromatin organisation and transcriptional regulation. 
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Chapter 1:

Introduction



1.1  Nucleosome and Chromatin Structure

To meet the topological and regulatory challenges posed by the abundance of DNA 

contained within the nucleus of eukaryotic cells, DNA is packaged with histones, and 

other proteins, into a nucleoprotein complex, termed chromatin. The basic repeating 

unit of chromatin is the nucleosome, consisting of approximately 147bp of DNA 

wrapped ~1.7 times around an octomeric disc of histone proteins (Fig1.1A; Kornberg 

1974; Luger et al. 1997). Canonical nucleosomes contain two of each major-type 

histone protein: H2A, H2B, H3 and H4, whose structured regions form regular 

hydrogen and electrostatic bonds with the DNA phosphate backbone (Luger et al. 

1997). The flexible histone N-terminal tails make minimal contact with the DNA but 

provide hubs for chemical modification and interaction with neighbouring nucleosomes 

and nuclear factors. Nucleosomes are connected by variable lengths of DNA between 

~20-90 bp, depending on both the organism and cell type, termed linker DNA. This 

“beads on a string” arrangement is termed the 10 nm fibre (Olins & Olins 1974), and 

comprises the primary structure of eukaryotic chromatin. 

Beyond the 10 nm fibre, chromatin is further compacted into secondary structures, 

representing local interaction between nucleosomes and fibres, and tertiary structures 

including long range interactions such as enhancer-promoter loops, chromosome 

territories, and condensed chromosomes (Fig1.1B). Despite extensive efforts, 

understanding of the secondary structure remains primitive, largely due to a lack of 

techniques to validate structural predictions. Classical models of secondary structure 

were based on observations that in vitro purified 10nm fibres together with linker 

histone H1 in low cation concentrations will form a 30nm fibre (Finch & Klug 1976). The

exact structure of this 30nm fibre remains unclear, with two main models proposed: the 

one-start helix or solenoid, and the two-start helix (Song et al. 2014; Widom & Klug, 

1985; Woodcock et al. 1984). However, cryo-EM, X-ray scattering and electron 

spectroscopic imaging analyses examining the in vivo structure of chromatin in 

mammalian nuclei have provided almost no evidence of 30nm fibres (McDowall et al. 

1986; Eltsov et al. 2008; Nishino et al. 2012; Fussner et al. 2011). These studies in 

stead converge on a less structured, dynamic model of irregularly folded 10nm fibres, 

described as a liquid-like state, even in mitotic chromosomes and chromocenters 

(Maeshima et al. 2016). 
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As opposed to the relative dearth of data on in vivo secondary chromatin structure, 

recent sequencing based methodologies have allowed high-throughput, high-resolution

examination of primary and tertiary structures genome wide. At the primary level these 

include techniques mapping DNA modifications such as whole-genome bisulphite 

sequencing (WGBS; Krueger et al. 2012) and those mapping the accessibility of the 

genome to restrictive enzymes and transposable elements: DNase-seq (Crawford et al.

2006), MNase-seq (Lee et al. 2007) and assay for transposase-accessible chromatin 

sequencing (ATAC-seq; Buenrostro et al. 2013). Histone modifications, chromatin 

architectural proteins, DNA-binding factors and non-coding RNA binding at specific loci 

can be analysed using standard chromatin immunoprecipitation sequencing (ChIP-seq;

Landt et al. 2012), ChIP-exo (Rhee & Pugh 2012) and chromatin isolation by RNA 

purification (CHIRP-seq; Chu et al. 2011) approaches. At the tertiary level, long-range 

interaction between genomic loci can be observed with the chromatin conformation 

capture (3C) family of techniques (e.g. 3C, 4C, 5C, Hi-C, scHi-C; Dekker et al. 2002; 

Dostie et al. 2006; Nagano et al. 2013; Lieberman-Aiden et al. 2009) which rely on 

proximity ligation. These techniques have provided a wealth of information on the 

complexities of chromatin states, and the regulatory roles of chromatin structure on 

DNA transcription, replication and repair.  
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Fig1.1: Nucleosome and Chromatin Structure.

A. Ribbon trace structure of the Xenopus laevis nucleosome core particle, depicting 146 bp

of DNA (red) wrapped around the histone octomer (H2A: light greens, H2B: blues, H3: dark 

green & orange, H4: yellow & turquise-green). The superhelical axis is indicated by red bar.

Protein Data Bank code: 1AOI, Luger et al. 1998. 

B. Diagram of possible chromatin structures at primary, secondary and tertiary compaction 

levels. In addition to canonical (blue/yellow) nucleosomes, nucleosomes can be modified 

with histone marks and variant histone proteins (purple and green) to modify the local and 

higher-order chromatin properties. Architectural proteins such as linker histones and CTCF 

facilitate the formation of higher-order structures. Figure reproduced with permission from 

Luger et al. 2012. 
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1.2  Chromatin and Transcription Regulation

The complex and dynamic structure of chromatin provides a host of regulatory 

opportunities to control access to the underlying DNA, essential for control of 

transcription, replication and repair of the genome. In the current study we focus on the

interplay between chromatin and transcriptional regulation. Transcription is primarily 

driven by the binding of transcription factors (TF) and formation of the pre-initiation 

complex (PIC) at core promoters (Zhang & Reese 2007; Zawadzki et al. 2009); 

however chromatin accessibility in turn influences the binding of TF and PIC 

components (Wu 1980; Carr & Biggin 2000). Promoters are, in general, more 

inherently accessible than other regions of the genome, possessing poly(dA-dT) tracts 

in yeast  and CpG islands in mammals, both of which are refractory to nucleosome 

occupancy (Kaplan et al. 2009; Valouev et al. 2011). However the DNA-encoded 

accessibility bias of a given locus can be modified by a multitude of factors in order to 

optimise cell-type specific gene expression programs; these factors including histone 

modifications, linker histones, histone variants, nuclear factors, architectural chromatin 

proteins and ATP-dependent chromatin remodelers (Luger et al. 2012). 

Chromosomes occupy distinct territories within the nucleus (Cremer et al. 1982), but 

the positioning of genes within these territories has a significant impact on their 

transcriptional regulation. The classical observation of more repressive/compact and 

active/open chromatin – termed heterochromatin and euchromatin respectively, 

represent the most fundamental compartmentalisation of chromatin (Heitz 1928). Hi-C 

studies have reconfirmed this gross binary division of the genome (Lieberman-Aiden et 

al. 2009). More recent insights include the observed localisation of active regions to 

nuclear pores (Casolari et al. 2004) and the association of repressed regions with the 

nuclear lamina (Pickersgill et al. 2006). At higher resolution it is possible to further 

divide chromatin into topologically associated domains (TADs) of ~0.1 to 1 megabase 

in size (Dixon et al. 2012; Hou et al. 2012; Nora et al. 2012; Sexton et al. 2012). While 

these territories and TADs appear recurrently across cell types and even species 

(Dixon et al. 2012), the specific intra-domain, inter-domain and inter-chromosome 

interactions of individual loci are highly dynamic and cell-type specific (Nagano et al. 

2013; Phillips-Cremins et al. 2013).
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These observations at the tertiary and primary scales of chromatin structure suggest a 

general principle governing the relationship between chromatin and transcriptional 

control; that the chromatin state of a given gene represents a balance between 

constitutive genome ordering and dynamic locus-specific remodeling events to optimise

cell-type specific transcriptional programs. The key determinants of these locus-specific

effects are briefly summarised below.

Fig1.2: Mechanisms of Chromatin Modification.

Diagram of four broad categories of chromatin modification mechanisms utilised to regulate

transcription of genes to establish and maintain cell-type specific transcriptional programs. 

Histone post-translational modification of histone tails such as H2B ubiquitination (Ub), H3 

acetylation (Ac), phosphorylation (P) and methylation (Me) influence the properties and 

interactions of histones. Incorportation of variant histones such as H3.3, and binding of 

linker histones including H1, alters the interaction surface of nucleosomes. Chromatin 

remodelling complexes such as INO80 are able to incorporate, evict, shift and remodel 

nucleosomes affecting both primary and tertiary chromatin structure. Finally looping 

between distal chromatin sections and formation of chromatin domains help to functionally 

demarcate chromatin regions. 
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1.2.1  Histone Post-Translation Modifications

Histones can host a surprising number of distinct post-translational modifications, 

including methylation, acetylation, phosphorylation, SUMOylation and ubiquitination, 

targeted to specific residues within the histone tail (Strahl & Allis 2000; Tan et al. 2011). 

A number of these are well known markers of active transcription – such as tri-

methylation of histone 3 lysine 4 (H3K4me3), H2B ubiquitination (H2Bub) and 

H3K26me3. Others are associated with repressive states – including H3K9me3 and 

H3K27me3. The presence of both H3K27me3 and H3K4me3 is thought to mark genes 

in a “bivalent” state – poised for induction (Bernstein et al. 2006). While the majority of 

modifications are thought to influence the recruitment and retention of protein factors to

genomic regions in a combinatorial fashion, others can also influence the physical 

properties of chromatin (Strahl & Allis 2000; Jenuwein & Allis 2001). For example, 

acetylation of histone tails interferes with nucleosome interactions and inhibits 

chromatin compaction (Shahbazian & Grunstein 2007).  

1.2.2  Linker and Variant Histones

In addition to the canonical histone proteins, eukaryotes possess a repertoire of 

functionally specialised variant histones. Canonical histones are expressed in a 

replication-dependent fashion and ubiquitously incorporated throughout the genome. 

Variant histone expression is replication-independent, and they are targeted to specific 

loci by chromatin remodelers and histone chaperones. 

The H2A variant H2A.Z is among the most highly studied, and is highly evolutionarily 

conserved across eukaryotes (Eirín-lópez et al. 2009). H2A.Z tends to be incorporated 

at nucleosomes flanking the TSS by SWR chromatin remodeling complexes (Albert et 

al. 2007). H2A.Z is generally thought to destabilise nucleosomes, facilitating 

transcription (Meneghini et al. 2003; Zhang et al. 2005; Guillemette et al. 2005), but 

has additional roles in transcriptional repression, repair and chromosome segregation 

(Svotelis et al. 2009). MacroH2A variants consist of a H2A-like domain linked to a large

macro-domain which binds metabolic NAD+ derivatives (Kustatscher et al. 2005). The 

role of macroH2A is poorly understood but seems to play both repressive and 

activating transcriptional roles, and provides an interesting link to the metabolic state of

the cell (Creppe et al. 2012; Costanzi & Pehrson 1998). 
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H3.3 is one of the most pervasive histone variants, replacing the canonical H3.1/H3.2 

at regions of high nucleosome turnover such as the body of transcribed genes 

(Kraushaar et al. 2013; Elsasser et al. 2015). However it is also found at repressed 

genes and regions such as telomeres, and is deposited through multiple distinct 

mechanisms (Goldberg et al. 2010). CENP-A is another H3 variant that is both 

necessary and sufficient for centromere formation in metazoans (Mendiburo et al. 

2011). Interestingly all of the histone variants discussed are frequently mutated or mis-

regulated in human cancers (Zink & Hake 2016). H2A.Z, H3.3 and CENP-A are also 

essential to mammalian development – with mouse knockouts displaying embryonic 

lethality (Faast et al. 2001; Howman et al. 2000; Jang et al. 2015).

Binding of linker histones (H1 or H5) to the DNA entry/exit sites of the nucleosome (van

Holde 1989) to form a chromatosome is largely considered repressive, limiting 

nucleosome mobility (Pennings et al. 1994) and potentially promoting higher order 

folding (Thoma et al. 1979; Bednar et al. 1998). In higher eukaryotes linker histones 

are essential and highly abundant – approximately equimolar with nucleosomes (van 

Holde 1989; Fan et al. 2003); however in lower eukaryotes H1 mutants are viable 

(Patterton 1998). In addition to the chromatosome, the potential for nucleosomes to 

form alternative structures to the canonical octomeric disc has been appreciated for 

some time (Luger et al. 2012). However evidence of these alternative structures are 

only now beginning to emerge. The Henikoff lab has suggested the presence of 

hemisomes – half nucleosomes containing only one copy of each histone protein, and 

right-handed DNA wrapping nucleosomes at yeast centromeres (Furuyama & Henikoff, 

2009; Henikoff et al. 2014). ChIP-exo and H4S47C cleavage maps, which use a 

cysteine substitution in the H4 tail to introduce precise break locations into the genome,

have proposed the presence of asymmetric nucleosomes at yeast promoters 

(Ramachandran et al. 2015; Rhee et al. 2014). These asymmetric structures potentially

represent intermediates of RSC-mediated nucleosome remodeling. Alternate 

nucleosome structures remain somewhat controversial but may prove important for 

future understanding of chromatin structure.  

1.2.3  Looping and Architectural Chromatin Proteins

Long range functional interactions of specific genomic loci via chromatin looping are 

abundant and highly cell-type specific (Nagano et al. 2013). Interaction can have both 
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repressive and activating effects on gene expression, however the best studied 

category is the activating effect of enhancer-promoter looping. Enhancers tend to lie in 

cis to their respective genes, but can be located inter- or intra-genically, up- or down-

stream and positioned long distances from their targets. As an example, an enhancer 

important for regulating sonic hedgehog (SHH) expression in limb development is 

located ~1Mb upstream in an intron of LMBR1 (Lettice et al. 2003). The enhancer-

promoter interaction is essential for transcriptional regulation of SHH, with enhancer 

deletion eliminating expression (Sagai et al. 2005). Furthermore, gene inversion in 

human disease leads to alternative enhancer association, mis-expression and limb 

malformations (Lettice et al. 2011). While enhancer interaction appears to be important,

it is not sufficient; interaction is observed in cell-types not expressing SHH, possibly 

representing poised populations; further re-location of the gene away from its 

chromosome territory towards the interior of the nucleus appears to be necessary for 

active expression (Amano et al. 2009). This single interaction provides a demonstrative

case for the importance and intricacies of long range interactions in optimising cell-type

specific gene expression.

The mechanisms of loop formation are not clear, but interaction sites are frequently 

associated with chromatin architectural proteins – chief among them cohesin and 

CCCTC-binding factor (CTCF) (Hadjur et al. 2009; Phillips-Cremins et al. 2013). A 

relatively recent model of loop formation posits that an extrusion complex, predicted to 

comprise either a single cohesin ring or a cohesin dimer and two CTCF subunits bind 

at a specific locus. Translocation leads to the extrusion of DNA into a central loop, while

the CTCF proteins scan opposing strands for CTCF motifs. Extrusion continues until 

convergent motifs are bound by CTCF (Nasmyth 2001; Sanborn et al. 2015).  This 

model explains the lack of overlap between loops, the observation of convergent CTCF

sites at looped loci, and is supported by computational modelling and Hi-C data 

(Sanborn et al. 2015). Exactly how the extrusion model fits together with the larger 

scale compartmentalisation of the genome into TADs is unclear. Nonetheless 

compartmentalisation appears important for regulating looping; most known promoter-

enhancer loops identified to date are found within individual TADs (Dixon et al. 2012; 

Smallwood & Ren 2013). And deletion of TAD boundaries leads to ectopic locus 

interactions and mis-regulated transcription within the domain (Nora et al. 2012). 
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1.2.4  Nucleosome Positioning

Nucleosome positioning has immediate effects to restrict access of DNA binding 

proteins to nucleosomal DNA, plus a wider influence on higher order structure (Iyer 

2012; Struhl & Segal 2013). In vitro nucleosomes act as a barrier to RNA polymerase II

(RNAPII) transcription initiation and elongation (Workman & Buchman 1993); and 

single locus studies, particularly of PHO5 and GAL1-10 genes in yeast, have provided 

in vivo evidence that nucleosome remodeling regulates transcription (Rando & Winston

2012; Korber & Barbaric 2014). In high phosphate conditions the PHO5 promoter is 

occupied by five well positioned nucleosomes, occluding the promoter and one of two 

Pho4 transcription factor binding sites (Almer & Hörz 1986). In low phosphate 

conditions Pho4 binding to the exposed binding site leads to nucleosome eviction, 

forming a nucleosome depleted region that is a prerequisite for subsequent 

transcription (Almer et al. 1986; Fascher et al. 1990; Boeger et al. 2003; Reinke and 

Horz 2003; Boeger et al. 2004; Korber et al. 2004). This remodeling process involves a 

host of chromatin remodelers, modifiers and histone-chaperones including SWI/SNF, 

RSC, INO80, Isw1 and Chd1 (Neef & Kladde 2003; Gaudreau et al 1997; Ehrensberger

& Kornberg 2011; Reinke & Hörz 2003; Barbaric et al. 2007; Steger et al. 2003; Huang 

& O’Shea 2005; Dhasarathy & Kladde 2005; Musladin et al. 2014; Brown et al. 2011). 

These studies and many others demonstrate the complex role of nucleosome 

positioning in transcriptional regulation.

The positions of nucleosomes can be mapped by digesting chromatin within 

permeabilised nuclei with micrococcal nuclease (MNase), which digests accessible 

linker DNA, and sequencing resulting protected DNA fragments – termed MNase-seq. 

Numerous genome wide nucleosome mapping studies have now been undertaken in a 

range of organisms (Yuan et al. 2005; Albert et al. 2007; Mavrich et al. 2008; Schones 

et al. 2008; Shivaswamy & Iyer 2008; Valouev et al. 2008; Johnson et al. 2006). A 

common, average nucleosome profile is observed around transcription start sites (TSS)

for all eukaryotes studied to date (Fig1.3). The first nucleosome downstream of the 

TSS - termed the +1, is the most prominent and well positioned, falling directly over the

TSS in yeast, but positioned slightly downstream in most higher eukaryotes (Yuan et al.

2005; Albert et al. 2007; Mavrich et al. 2008). Following the +1 an array of 

nucleosomes occupy the gene body (termed +2, +3, etc.) with decreasing uniformity of 

positioning, due in part to differential gene lengths and intron locations across 
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averaged genes. The linker length between nucleosomes varies significantly between 

organisms and cell types between ~20-90 bp (Yuan et al. 2005; Albert et al. 2007; 

Mavrich et al. 2008; Schones et al. 2008; Shivaswamy & Iyer 2008; Valouev et al. 

2008; Johnson et al. 2006). Upstream of the +1 lies a nucleosome depleted region 

(NDR or NFR: nucleosome free region) extending ~120 bp in S. cerevisiae. The 

prominence of upstream nucleosomes (termed -1, -2, etc.) is also variable between 

organisms, likely explained by organism-specific intergenic distances. The transcription

termination site (TTS) of genes typically display an inverse pattern to that at the TSS, 

though less pronounced.

Nucleosome positions are determined by a combination of factors including the 

underlying DNA sequence, active remodelling by ATP-dependent chromatin remodeling

complexes and interaction/competition with other DNA binding factors. The relative 

contribution of each, particularly of DNA sequence, has been a contentious issue within

the field. Mapping of in vitro assembled nucleosomes using chicken histone proteins, 

purified yeast DNA and salt dialysis recapitulates many aspects of in vivo yeast maps 

(Kaplan et al. 2009). And in vivo nucleosome maps themselves indicate depletion of 

nucleosomes over rigid poly(dA-dT) tracts and a pattern of 10bp AA/AT/TA dinucleotide 

periodicities at nucleosome enriched positions (Kaplan et al. 2009; Segal et al. 2006; 

Yuan & Liu 2008; Ioshikhes et al. 1996; Drew & Travers 1985). This would suggest that

DNA sequence plays a strong role in nucleosome positioning, yet in vitro assembled 

chromatin fails to recapitulate the ordered arrays of phased nucleosomes observed in 

vivo, indicating that precise control of positioning is dependent on nuclear factors. Null 

mutants of the spacing remodelers Chd1 and Isw1 in S. cerevisiae phenocopies this 

loss of phasing past the +2 nucleosome, indicating the essential role of remodelers in 

establishing and maintaining precise nucleosome positioning (Gkikopoulos et al. 2011).

An elegant experiment from the Struhl lab found that inserting yeast artificial 

chromosomes (YACs) from one yeast species into the cellular environment of another 

largely maintains the NFRs of the donor, but adopts host nucleosome spacing and 

positioning (Hughes et al. 2012). Thus while gross occupancy may rely heavily on DNA

sequence, precise positioning requires nuclear factors – particularly chromatin 

remodelling complexes.  
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Fig1.3: Global Genic Nucleosome Profile.

MNase-sequencing on a range of organisms has revealed a common average genic 

nucleosome structure. The diagram illustrates how this global profile is a product of 

determining individual nucleosome positions at all genomic loci, scoring these to produce a 

genic nucleosome profile, then averaging across all genes. This profile therefore represents

both the population-average, and the genome-wide average likelihood of nucleosome 

occupancy relative to genic features. Nucleosome positions, as highlighted on the diagram,

are customarily numbered relative to the TSS: +1, +2, etc. downstream, and -1, -2, etc. 

upstream. This pattern is mirrored around the gene end, here we term these positions 

relative to the terminal nucleosome (TN) to distinguish from the TSS. Regions immediately 

usptream of the TSS and downstream of the TTS are typically depleted of nucleosomes, 

and termed nucleosome depleted regions (NDRs).
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1.3 Chromatin Remodeling Complexes

1.3.1  SNF2 Proteins

The first chromatin remodelling complex (CRC) discovered was SWI2/SNF2 in 

Saccharomyces cerevisiae in screens for both defective mating type switching (SWI) 

and sucrose non-fermenting (SNF) mutants (Neigeborn & Carlson 1984; Peterson & 

Herskowitz 1992; Stern et al. 1984). The Snf2 ATPase was subsequently found to be 

the core catalytic subunit of the complex, and screens for suppressor mutants revealed

a link with various chromatin components including histones (Kruger et al. 1995; Clark-

Adams et al. 1988; Hirschhorn et al. 1992; Winston & Carlson 1992). In vitro studies 

were able to confirm the nucleosome remodeling activities of the purified complex 

(Côte et al. 1994; Hirschhorn et al. 1992; Laurent et al. 1993). A conserved array of 

remodelling complexes has since been discovered across all eukaryotes studied, with 

SNF2 family helicase-like ATPase proteins constituting the central catalytic subunit of 

each (Hargreaves & Crabtree 2011; Flaus et al. 2006). CRCs are essential for the 

establishment, maintenance and restructuring of chromatin during DNA transcription, 

replication and repair. The present study is mainly focused on the transcriptional roles 

of remodelers. 

CRCs are able to perform various biochemical activities in vitro, including nucleosomes

sliding, nucleosome disruption, nucleosome assembly and the exchange of core 

histones for histone variants (Tsukiyama et al 1994; Côte et al. 1994; Varga-weisz et al.

1997; Clapier & Cairns 2009). All CRCs share five basic properties: a core SNF2 

ATPase translocase, affinity for nucleosomes over naked DNA, domains for recognition

of histone modifications, domains for the regulation of the ATPase, and additional 

chromatin/TF recognition modules (Clapier & Cairns 2009). The ATPase binds 

nucleosomes at the SHL-2 region and translocates DNA to enact its remodeling 

activities; exactly how ATP hydrolysis is coupled to translocation remains unclear 

(Mueller-Planitz et al. 2013). The central Snf2 ATPase is necessary and sufficient for all

basic remodelling activities in vitro, with the accessory proteins providing target 

specificity and regulation (Mueller-Planitz et al. 2013b; Clapier & Cairns 2009). 

SNF2 proteins are of the helicase superfamily 2 (SF2), although only Ino80 actually 

possesses helicase activity (Gorbalenya 1988; Lusser & Kadonaga 2003). While the 

presence of SNF2 proteins is a defining feature of CRCs, the SNF2 family is large and 
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varied - containing TFs, repair factors, replication factors, and proteins of unknown 

function (Flaus et al. 2006). The chromatin remodelling SNF2 proteins are usually 

classified into four main groups based on homology of the core SNF2_n/DEAD/H 

ATPase domain and the presence of additional motifs (Fig1.4). These are the the 

SWI/SNF, ISWI, CHD and INO80 subfamilies (Clapier & Cairns 2009; Hargreaves & 

Crabtree 2011). It is important to note that while many SNF2 proteins are highly 

conserved across all eukaryotes, extrapolation between species can be challenging 

due to the gain/loss of subunits, expansion of gene families and increased specificity 

observed in higher eukaryotes.

Fig1.4: Four Major SNF2 Family Chromatin Remodelers.

All chromatin remodeling complexes contain a core catalytic SNF2 protein. The chromatin 

remodelling SNF2 proteins are divided into four main families based on protein motifs. All 

four contain DExx and HELICc domains which provide the ATPase-dependent translocase 

activity. Additionally the four families contain additional, characteristic motifs. The SWI/SNF 

family have an N-terminal helicase-SANT-associated HSA domain which binds actin-related

proteins and C-terminal bromo domains with affinity for acetylated histone tails. ISWI family

SNF2 possess C-terminal SANT and SLIDE, or HAND-SAND-SLIDE motifs, involved in 

histone binding. The CHDs contain tandem chromodomains – associated with chromatin 

remodeling and possibly involved in methylated histone binding. Finally the INO80/SWR 

family also contain HSA domains, and a longer insert length between DExx and HELICc 

domains.   
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1.3.2  SWI/SNF

SWI/SNF subfamily Snf2 proteins are characterised by an N-terminal HSA (helicase-

SANT) domain that binds actin related proteins, a C-terminal bromodomain involved in 

acetylated histone binding, and in higher eukaryotes, BRK and QLQ domains (Kim et 

al. 2003; Haynes et al. 1992; Tang et al. 2010). In S. cerevisiae the family consists of 

the archetypal Snf2, and Sth1 – the catalytic subunits of the SWI/SNF and RSC 

complexes respectively. Both complexes possess nucleosome sliding, evicting and 

remodelling functions in vitro (Kassabov et al. 2003; Dechassa et al. 2010). Sth1 is 

approximately ten fold more highly expressed than Snf2 and its knockout is lethal, 

while Snf2 mutants are viable. RSC is thought to play genome-wide roles in depleting 

nucleosome occupancy at constitutively expressed genes, and in positioning of +1 

nucleosomes (Hartley & Madhani 2009; Narlikar et al. 2013). SWI/SNF on the other-

hand appears to be primarily involved in context-dependent activation of inducible 

genes via promoter nucleosome eviction (Qiu et al., 2015; Shivaswamy & Iyer 2008; 

Schwabish & Struhl 2007; Peterson  & Herskowitz 1992; Hirschhorn et al. 1992).  

BRG1 associated factors (BAF) complex, the mammalian SWI/SNF complex 

homologue can incorporate either BRG1 (SMARCA4) or hBRM (SMARCA2) as the 

catalytic SNF2 core (Wang, Xue et al. 1996). In addition to the SNF2 and core 

components (BAF47, BAF155, BAF170) complex composition is biochemically diverse 

(Wang, Côte et al. 1996; Phelan et al. 1999). BRG1 but not BRM can also be 

incorporated into the PBAF complex, with subunit homology to yeast RSC. The BAF 

complex is a key tumour suppressor, exhibiting subunit mutation in ~20% of all human 

tumours in addition to epigenetic repression mechanisms (Kadoch et al. 2013; Shain & 

Pollack 2013; Versteege et al. 1998; Modena et al. 2005; Wilson & Roberts 2011). Loss

of Brg1 or the essential subunit Snf5/Ini1 is embryonic lethal in mice and heterozygotes

are tumour prone (Bultman et al. 2000; Klochendler-Yeivin et al. 2000). BRM knockout 

contrastingly has minimal phenotypic impact (Reyes et al. 1998). The BAF and PBAF 

complexes exhibit highly heterogeneous, cell-type specific composition and functions. 

Such roles including: neurogenesis (Wu et al. 2007), myogenesis (de la Serna et al. 

2006), hepatocyte differentiation (Gresh et al. 2005), HIV infection (Rafati et al. 2011), 

cell-cycle control (Nagl et al. 2007), and many more. In summary, the mammalian 

SWI/SNF complexes represent context dependent transcriptional regulators with 

pleiotropic effects. 
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1.3.3  ISWI

The imitation switch (ISWI) subfamily of remodelers was initially identified in 

Drosophila, based on homology to the Brahma gene (Elfring et al. 1994; Tsukiyama & 

Wu 1995). ISWI is the sole family member in Drosophila, but there are two in S. 

cerevisiae: Isw1 and Isw2 (Tsukiyama et al. 1999), and two in mammals: SNF2H and 

SNF2L (Aihara et al. 1998). The characteristic feature of ISWI family Snf2 proteins is 

the C-terminal histone binding SANT (ySWI3, yADA2, hNCoR, hTFIIIB) and DNA 

binding SLIDE (SANT-like ISWI) domains which recognise intrinsically curved DNA 

sequences (Grüne et al. 2003; Dang & Bartholemew 2007; Yamada et al. 2011; Rippe 

et al. 2007). In vitro studies have demonstrated nucleosome remodelling, 

rearrangement and assembly actions of the purified Drosophila protein (Corona et al. 

1999; Tsukiyama et al. 1999; Varga-weisz et al. 1997). In S. cerevisiae ISWI proteins 

are incorporated into three simple complexes; Isw1a, Isw1b and Isw2. Drosophila and 

mammalian complexes are more diverse including the ACF, CHRAC, NURF, WICH and

NoRC complexes (Deuring et al. 2000; Corona & Tamkun 2004). 

ISWI in higher eukaryotes is abundantly and ubiquitously expressed, with Drosophila 

ISWI and mammalian SNF2H and SNF2L proteins being essential for cell viability and 

development (Deuring et al. 2000; Stopka & Skoultchi 2003; Arancio et al. 2010). Yeast

Isw1 and Isw2 null cells on the other-hand are viable and largely phenotypically 

unaffected by remodeler loss. ISWI complexes are generally considered repressive, 

facilitating chromatin formation and compaction, and regulating nucleosome phasing to 

restrict RNAPII access (Corona & Tamkun 2004; Lusser et al. 2005). ISWI loss in 

Drosophila results in dramatic chromosome de-compaction (Deuring et al. 2000; 

Corona et al. 2007), de-repression of differentiation in germ and somatic stem cells (Xi 

& Xie 2005) and reduction of linker histone H1 incorporation (Corona et al. 2007; 

Siriaco et al. 2009). However complexes such as NURF are known to be more 

disruptive (Corona & Tamkun 2004). ISWI proteins have also been associated with 

active transcription, and are required for efficient transcription termination (Morillon et 

al. 2003; Mellor & Morillon 2003; Zentner et al. 2013). Expression studies in Drosophila

ISWI mutants do predominantly display de-repression upon ISWI loss, however only at 

a small subset of genes (Corona et al. 2007). Yeast Isw mutants equally have a 

minimal impact on transcription (Hughes et al. 2000; Fazzio et al. 2001). 
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1.3.4 CHD

Chromodomain, helicase, DNA binding (CHD) family remodelers are characterised by 

the presence of tandem chromodomains at their N-terminus. They are present in all 

eukaryotes but highly variable in number and complexity, with only one monomeric 

protein in yeast but at least nine complexes in mammals. CHDs are further divided into 

three classes: class I (CHD 1-2), class II (CHD3-5), and class III (CHD 6-9) (Clapier & 

Cairns 2012). 

Class I CHD proteins posses SANT and SLIDE domains structurally related to those of 

ISWI (Ryan & Owen-Hughes 2011; Sharma et al. 2011; Woodage et al. 1997). Chd1 is 

the most studied example, and the only CHD subfamily Snf2 protein in S. cerevisiae, 

however its knockout results in only a mild sensitivity to 6-azouracil treatment 

(Tsukiyama et al. 1999). Chd1 associates with RNAPII and is thought to be involved in 

re-establishing nucleosomes displaced during elongation (Simic et al. 2003; Marfella & 

Imbalzano 2007; Radman-Lavaja et al. 2012), suppressing cryptic transcription (Smolle

et al. 2012; Smolle & Workman 2013) and in regulating transcription termination (Alen 

et al. 2002). Chd1 is the sole class I CHD in Drosophila, and null mutants display 

sterility (McDaniel et al. 2008; Murawska & Brehm 2011). Drosophila Chd1 associates 

with transcriptionally active puffs on polytene chromosomes, further supporting a role in

active transcription (Stokes et al. 1996). Humans possess CHD1 and CHD2, expressed

in all major tissues (Woodage et al. 1997). CHD1 is enriched at active promoters and is

thought to associate with elongating RNAPII to regulate co-transcriptional events 

including initiation, elongation, splicing and termination (Sims & Wade 2011; Murawska 

& Brehm 2011). How CHD1 is targeted to promoters is unclear but it associates with 

Mediator (Lin et al. 2011) and has been shown to have H3K4me2/3 binding activity 

(Flanagan et al. 2007). However the importance of H3K4me binding is contentious, and

yeast Chd1 do not possess this activity (Sims et al. 2005). Mammalian CHD1 is further 

involved in maintenance of pluripotency (Gaspar-Maia et al. 2009). CHD2 is required 

for mammalian development, with homozygous truncated CHD2 mice non-viable, while

heterozygous mice display reduced survival rates (Marfella et al. 2006). Recently 

CHD2 mutations in humans have been linked to developmental defects (Kulkarni et al. 

2008) and epileptic encephalopathies (Carvill et al. 2013; Lund et al. 2014; Courage et 

al. 2014; Chénier et al. 2014; Suls et al. 2013). 

Class II CHDs are characterised by C-terminal PHD domains. The class II CHDs in 
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Drosophila and mammals CHD3/Mi-2α  and CHD4/Mi-2β  are essential components of 

the Mi-2/Nucleosome remodelling and deacetylase (NuRD) complex, which functions in

gene repression during differentiation, chromatin assembly and repair (Wade et al. 

1998; Zhang et al. 1998; Xue et al. 1996; Lai & Wade 2011). The combined remodeling

and histone de-acetylation functions are thought to be important for the dense packing 

of hypoacetylated nucleosomes in heterochromatin (Denslow & Wade 2007; Wang & 

Zhang 2001). Importantly though NuRD, and CHD4 independently of NuRD, are not 

purely repressive, having complex transcriptional roles (Kim et al. 2014; Miccio et al. 

2010; Reynolds et al. 2012; Shimbo et al. 2013). Expression of the type II CHDs is 

developmentally regulated with Mi-2α detected early in development and Mi-2β later 

(Khattak et al. 2002). Null mutants in C. elegans and Drosophila are lethal (Khattak et 

al. 2002; von Zelewsky et al. 2002), and disruption of NuRD function in mammals is 

associated with cancers and aging (Lai & Wade 2011; Pegoraro et al. 2009). 

The most studied type III CHD is Drosophila Kismet, a trithorax group protein important

for HOX gene expression (Daubresse  et al. 1999; Srinivasan et al. 2005). This role in 

development is conserved in human homologues; CHD7 mutations are the most 

common cause of CHARGE syndrome which manifests a plethora of developmental 

defects (Zentner et al. 2010; Lalani et al. 2006), and Chd8 is linked to Autism spectrum 

disorders (Bernier et al. 2014; Cotney et al. 2015). Mammals possess five members of 

class III CHDs (CHD5-9) with highly varied expression and roles. Mammalian CHD5 is 

mainly restricted to neural tissues and testes (Thompson et al. 2003) and plays roles in

neurogenesis and spermatogenesis (Egan et al. 2013; Li & Mills 2014). CHD6 mutant 

mice are viable (Lathrop et al. 2010), whereas CHD7 and CHD8 homozygous 

knockouts are lethal (Hurd et al. 2007; Bosman et al. 2005; Nishiyama et al. 2004). 

CHD7 is widely expressed but particularly important for neural development, including 

neural crest formation (Bosman et al. 2005; Bajpai et al. 2010), and maintaining the 

quiescence of neural stem cells (Jones et al. 2014). CHD8 is involved with canonical 

Wnt/-catenin signalling and interacts with CTCF, possibly linking CHD8 to insulator 

activity (Ishihara et al. 2006; Thompson et al. 2008; Yates et al. 2010). Finally CHD9 is 

poorly understood but appears to be involved in skeletal tissue development (Shur et 

al. 2005; Marom et al. 2006). In general, the type III CHD proteins play highly 

specialised and distinct developmental roles.
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1.3.5  INO80 and SWR

Inositol requiring 80 (INO80) was identified as a mutant for defective induction of gene 

expression in low inositol and homology with ISWI (Ebbert et al. 1999; Shen et al. 

2000). Both Ino80 and Swr SNF2 proteins possess a distinguishing split ATPase 

domain, with Rvb1/2 and Arp protein binding sites inserted between the DExx and 

HELICc domains of the ATPase (Morrison & Shen 2009). Ino80 has roles in repair and 

transcriptional activation; Swr and Ino80 also play reciprocal roles in the deposition and

removal, respectively, of H2A.Z (Htz1p), commonly flanking NDRs in yeast (Krogan et 

al. 2003; Kobor et al. 2004; Mizuguchi et al. 2004; Papamichos-chronakis et al. 2010; 

Albert et al. 2007). The Swr1 homologues are SRCAP and p400 in mammals (Gévry et

al. 2007; Ruhl et al. 2006); Domino in Drosophila and Ino80 is present in yeasts, flies 

and mammals (Flaus et al. 2006; Clapier & Cairns 2009). 

In addition to its roles in H2A.Z deposition, Swr is able to act as a H2A.Z histone 

chaperone (Hong et al. 2014). Histone acetylation influences the efficiency of H2A.Z 

deposition via interaction with the SWR-C Bdf1 subunit (Zhang et al. 2005; Watanabe 

et al. 2013). The dominant targeting mechanism however is thought to be the binding 

of both nucleosome free DNA and histones, localising activity to NFR proximal 

nucleosomes (Yen et al. 2013; Ranjan et al. 2013). This thus fits with a common theme 

of acetylation and other histone marks fine-tuning CRC occupancy/activity rather than 

acting as a driving mechanism. H2A.Z is essential for viability of higher eukaryotes (van

Daal & Elgin 1992; Faast et al. 2001), and reduces growth in yeast (Santisteban et al. 

2000).  

1.3.6 Spacing Remodelers

The ability of the ISWI and CHD families to sample DNA linker lengths through their 

SANT and SLIDE domains (Sharma et al. 2011; Yamada et al. 2011) is thought to 

modify the behaviour of the ATPase module to allow even spacing of nucleosomal 

arrays rather than disruption (Racki et al. 2009; Bouazoune & Kingston 2012). This 

spacing activity has been demonstrated in vitro (Tsukiyama et al. 1999) and 

nucleosome mapping in S. cerevisiae Isw1, Isw2 and Chd1 double and triple mutants 

support in vivo roles in array phasing and spacing (Gkikopoulos et al. 2011). Binding of 

extra-nucleosomal DNA is required to stimulate remodelling activities of these proteins 
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in vitro (Gangaraju & Bartholomew 2007; Zofall et al. 2004; Dang et al. 2007; McKnight 

et al. 2011), and it has been proposed that they can only bind the NDR and act on 

disrupted arrays, such as in the wake of RNAPII elongation (Zentner et al. 2013). 

Indeed remodeler binding levels are correlated with RNAPII elongation rate and 

nucleosome turnover (Zentner et al. 2013). Conversely, as discussed above, these 

complexes regulate transcription and co-transcriptional processes. However this 

relationship with transcription is complex, with minimal influence of individual ISWI or 

CHD loss on transcription or nucleosome positioning observed in yeast (Gkikopoulos et

al. 2011). CHD and ISWI family remodelling complexes are thus referred to here as 

'spacing remodelers'. Exploring how spacing remodelers function both individually and 

in combination, to establish and maintain in vivo nucleosome positioning and chromatin

structure is the primary focus of the present study. 
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Fig1.5: Subunit compositions of major chromatin remodelling complexes.

The potential subunit compositions for some of the major mammalian chromatin 

remodelling complexes are diagrammed for the four main families of remodelers: SWI/SNF,

CHD, ISWI and INO80/SWR. The core SNF2 ATPase is highlighted in bold for each 

complex, alternative subunits are separated by slashes. BAF and PBAF complexes are 

highly similar, and only variable subunits are labelled for PBAF.
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1.4  Dictyostelium discoideum 

1.4.1  Dictyostelium as a Model Organism

The amoebozoa likely branched from the evolutionary line towards animals after plants 

but prior to fungi (Eichinger et al. 2005); the best studied member is the Mycetozoa, 

Dictyostelium discoideum. Dictyostelium are soil dwelling amoeba which feed on 

bacteria and undergo binary fission, discovered by Kenneth Raper in 1933 (Raper 

1935). Dictyostelium is termed a social amoeba due to its vegetative unicellular growth 

when provided with adequate nutrients, switching to a simple multicellular development

process upon starvation (Loomis 2014). Due to the importance of cyclic adenosine 

monophosphate (cAMP) mediated chemotaxis in the developmental cycle and as a 

bacterial attractant in growth (Bonner 1947; Konijn et al. 1969), chemotaxis has been a 

key area of study in Dictyostelium; it has also proved a fruitful model system for 

chemotaxis in higher eukaryotes. Its simple and rapid development cycle also provides 

a useful model for studying developmental processes. Furthermore uncoupling of 

growth and development allows disruption and study of developmental factors that may

be lethal in many obligate multicellular organisms. In addition to bacterially grown 

Dictyostelium, axenic mutant strains have been isolated which are capable of growth in

liquid axenic media containing inorganic salts, glucose, peptone and yeast extract,  

facilitating standardised growth (Sussman & Sussman 1967; Watts & Ashworth 1970). 

These axenic strains were isolated through a process of repeated subculture with 

decreasing amounts of fetal calf serum and liver extract (Watts & Ashworth 1970). The 

causative mutations allowing axenic growth in these strains were recently found to be 

harboured within genes encoding a RasGAP - Neurofibromin, loss of which allows 

formation of enlarged macropinocytic vesicles (Bloomfield et al. 2015). Efficient 

methods have been established for genetic manipulation, including for the 

establishment of multi-knockout and knock-in strains (Faix et al. 2004). Furthermore, 

Dictyostelium has a compact, sequenced 34 Mb haploid genome and a dedicated 

database for genome annotation (dictybase.org; Eichinger et al. 2005; Basu et al. 

2013). Thus Dictyostelium also provides a useful model for modern genomics. 
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1.4.2  Dictyostelium Development

Upon starvation or high cell density, ~1x105 Dictyostelium cells will aggregate into loose

mound structures, and develop an extracellular matrix to form the tight mound (Gerisch

et al. 1975; Chisholm & Firtel 2004). At this stage they may form a mobile slug structure

that can migrate phototactically to an optimal position for development into the final 

fruiting body structure. The fruiting body consists of a bolus of spores on a cellulosic 

stalk and basal disc. The two cell types, vacuolised stalk and dormant spore cells, are 

preceeded by pre-stalk cells that make up the anterior quarter of the slug, and pre-

spore cells that constitute the posterior (Raper 1950). This developmental cycle takes 

approximately 24 hours from starvation to completion (Raper 1950; Chisholm & Firtel 

2004). 

Fig1.6: Dictyostelium discoideum 

in Growth and Development.

Dictyostelium grow unicellularly in 

soil but upon starvation aggregate 

into a mutlicellular mound before 

progressing through a series of well 

defined morphological changes, 

ultimately forming the final fruiting 

body structure. A. Scanning-electron

micrograph of developmental 

stages/morphological structures. B. 

Diagram of the timing of 

Dictyostelium development. 

Reproduced with permission from 

Fey et al. 2007. 
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1.4.3  The Dictyostelium Genome and Chromatin Architecture

The genome of the Ax4 strain of Dictyostelium consists of a 34 Mb nuclear genome 

across 6 chromosomes (Eichinger et al. 2005) containing ~12,700 protein coding 

genes (Gaudet et al. 2011), a 55 kb mitochondrial genome (Ogawa et al. 2000) and an 

extrachromosomal palindrome containing the ribosomal RNA genes (Sucgang 2003). 

Three other dictyostelids have also been sequenced: D. purpureum (Sucgang et al. 

2011), D. fasciculatum and Polysphondylium pallidum (Heidel et al. 2011; Basu et al. 

2013). The most striking feature of the Dictyostelium genome is it’s high AT content, 

with a GC content of 22.4% overall, ranging from 27% in exons to 12% in introns 

(Eichinger et al. 2005). The majority of genes possess introns but typically of only ~150

bp in length (Gaudet et al. 2011). Although haploid, cells enter S phase immediately 

following mitosis, so contain a duplicated genome for the majority of the cell cycle 

(Muramoto & Chubb 2008). Gene density is high at ~62% of the genome, and with 

roughly double the genes contained in the S. cerevisiae genome it provides a useful 

intermediate on the spectrum of transcriptome complexity.

The chromatin environment of Dictyostelium includes a diverse number of histone 

variants, histone post-translational modifications and nuclear factors. The complement 

of histone proteins includes a canonical H1 linker histone, H2A.Z and H2AX, a 

predicted centromeric H3 variant (H3v1, Dubin et al. 2010), and a number of less well 

characterised histone variants (Stevense et al. 2011). Most common histone 

modifications have been detected by mass-spectroscopy including H3 K4, K36 and 

K79 methylation, H3 K9 and K27 acetylation and H3K9 di- and trimethylation (Stevense

et al. 2011). The heterochromatin is late replicating, and CpG dinucleotides are under-

represented suggesting cytosine methylation (Eichinger et al. 2005). Interestingly, the 

average placement of the first genic (+1) nucleosome is similar to most metazoans, at 

a distance ~115 bp downstream of the TSS, and homologs of the NELF pausing factor 

are evident (Chang et al. 2012). This has been suggested to be indicative of RNA 

polymerase pausing, only otherwise documented in metazoans (Chang et al. 2012; 

Mavrich et al. 2008; Valouev et al. 2011). Hence Dictyostelium chromatin possess a 

number of features usually associated with higher eukaryotes, possibly indicating their 

importance to multicellular development. On the other hand, a number similarities are 

also observed with yeast: the three main H3 genes appear to encode a H3.3-like 

histone, a variant normally incorporated into transcribed genes in a replication 
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independent manner in higher eukaryotes (Stevense et al. 2011; Ahmad & Henikoff 

2002). Dictyostelium also appears to lack H3K27 methylation and polycomb group 

components (Stevense et al. 2011).

MNase-seq has been conducted in WT Dictyostelium by Chang et al. (2012) and our 

own group (Platt 2013). Resultant nucleosome maps are highly similar despite varying 

methodologies, sequencing platforms and cell strains, indicating the robustness of this 

technique. The +1 nucleosome is positioned ~70 bp downstream of the ATG initiation 

codon, the NDR is approximately 170 bp wide, and arrays have an average 

nucleosome repeat length of ~170 bp (Platt 2013; Chang et al. 2012). Compared to 

yeast profiles, intergenic and intronic sequences are more nucleosome depleted, 

possibly as a result of high AT content affecting both nucleosome occupancy and 

MNase digestion (Platt 2013). A very slight increase in spacing of ~3 bp is observed in 

chromatin at aggregation (Chang et al. 2012) and mound stages of development (Platt 

2013). Furthermore, our lab has shown that a subset of developmentally regulated 

genes representing ~20% of the genome are dramatically remodelled between growth 

and mound stages (Platt 2013). Importantly though not all remodelled genes have 

expression changes and not all developmentally regulated genes undergo remodelling.

1.4.4  Chromatin Remodelers in Dictyostelium

Members of each of the main remodeler families are present in Dictyostelium, plus 

more unusual SNF2 proteins such as JBP2 (Clapier & Cairns 2009). Dictyostelium 

CHD family remodelers have previously been examined in our lab (Platt et al. 2013). In 

addition to the class I CHD protein (ChdA) homologous to yeast Chd1, Dictyostelium 

possesses two additional CHDs. ChdB lacks a PHD finger but contains a CHDCT2 

domain – two class II associated motifs, however overall ChdB shows closest 

homology to Class III proteins (Platt et al. 2013). ChdC is more clearly categorised as 

class III, being closely related to the Chd6-9 (Platt et al. 2013). Null strains have been 

generated and phenotypically characterised for the three core-SNF2 CHD proteins 

(Platt et al. 2013). Additionally, an arp8-null strain is also available (unpublished), arp8 

is an essential component of the INO80 complex in yeast, and its knockout 

phenocopies Ino80 SNF2 mutation. 
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1.5  Project Aims

Chromatin remodelers are essential for all of the fundamental processes of chromatin 

metabolism, exemplified by their conservation across all eukaryotes (Flaus et al. 2006).

In vitro studies have provided fundamental understanding of their remodeling 

mechanisms; and in vivo studies, primarily in S. cerevisiae, have provided insights into 

their general biological functions. Nonetheless, why such a diverse array of 

energetically expensive complexes with common catalytic activities are required 

remains unclear. And a broader understanding of how remodeling activities enact cell-

type specific transcriptional programs is yet lacking. This is particularly true of the 

spacing remodelers, loss of which individually has minimal effect on phenotype, 

chromatin structure or transcription in yeasts, yet are essential to higher eukaryotes. 

Dictyostelium provides a tractable model with surprisingly metazoan-like chromatin and

a simple developmental program; representing a unique system to explore remodeler 

function while avoiding the KO lethality and inhibitory costs involved in studying 

remodelers in higher eukaryotes. I therefore aim to establish Dictyostelium as a novel 

model in which to conduct exploratory analysis of remodeler functions and interactions.

To this end, I aim to generate null strains for the remaining four core remodelers in 

Dictyostelium: Isw, Snf2a, Snf2b and Swr1. Phenotypic affects across growth, 

development and chemotaxis will then be compared for all core remodelers. MNase-

sequencing will be performed on newly generated Isw null cell lines. This Isw- MNase-

seq data, together with previously generated, but un-analyed ChdA- and ChdB- MNase-

seq data, and published ChdC- data, will provide high-resolution, genome-wide 

nucleosome maps for all spacing remodeler mutants. Finally, RNA-sequencing will be 

conducted in the Isw- cell line, and analysed alongside the published transcriptional 

profiles of the CHD null cell lines. The proposed work will generate a comprehensive 

resource on the impact of remodeler loss. Detailed bioinformatic analysis on these data

will generate novel insights into the distinct and combinatorial roles of the CHD and 

ISWI family remodelers in establishing and maintaining primary in vivo chromatin 

structure, and the effects of chromatin disruption on transcriptional regulation. 
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Chapter 2:

Materials and Methods



2.1 Dictyostelium Strains and Cell Culture

Ax2 was used as the wild-type (WT) strain in all cases otherwise stated, and was the 

parent strain of all mutants generated. Cells were grown axenically either in shaking 

culture or adhered to bacteriological plates in HL-5 medium (Formedium; 14 g/L 

peptone, 7 g/L yeast extract, 13.5 g/L glucose, 0.5 g/L KH2PO4, NaHPO4) 

supplemented with 100 μg/ml Streptomycin-sulphate. For selection of mutants, HL-5 

was also supplemented with either 40 μg/ml G418 or 10 μg/ml Blasticidin. Cells were 

also grown on bacterial lawns of Klebiella aerogenes on SM agar plates (Formedium; 

17 g/L agar, 10 g/L peptone, 1 g/L yeast extract, 10g/L glucose, 1.9 g/L KH2PO4, 1.3 g/L

K2HPO4.3H20, 0.49 g/L MgSO4). Washing and starving of cells was carried out in KK2 

buffer (Formedium; 2.25 g/L KH2PO4, 0.51 g/L K2HPO4) or KK2 agar (KK2 buffer + 18 

g/L agar). Cells were grown at 22˚c, and centrifugation steps carried out at 500 x g for 2

minutes. 

2.2  Cloning

Plasmid digests were generally carried out with 10 U RE/g of DNA with enzymes from 

New England Biolabs under manufacturer recommended conditions. DNA fragments 

were checked by agarose gel electrophoresis with EtBr staining, final plasmids were 

also sequenced. Ligation steps were carried out with T4 DNA ligase (New England 

Biolabs) under recommended conditions, and generally a 3:1 insert to vector ratio.   

2.2.1  Genomic DNA Extraction

107 cells were pelleted, washed once in KK2 and lysed in 750 l DNAzol (Invitrogen), 

350 l of 100% ethanol added and incubated at RT for 2 min to precipitate DNA. 

Precipitated DNA was centrifuged at 4000 x g for 5 min at RT and washed twice with 

70% ethanol, air dried and resuspended in 50 l 8 mM NaOH and 7.95 l 0.1M HEPES

buffer (pH 7.5). 

Quick extraction of DNA for PCR screening was carried out as follows. Cells in a 96-

well plate were resuspended in 25 l of KK2, 10 l transferred to PCR tubes and 10 l 

lysis buffer (50 mM KCl, 10 mM TRIS pH 8.3, 2.5 mM MgCl2, 0.45% NP40 and 0.45% 

Tween20, 0.8 g/l Proteinase K) added. After 2 minutes incubation at RT, Proteinase 

K was inactivated by 1 minute incubation at 95c. 
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2.3.2  Knockout Construct Design

Regions of ~1 kb upstream of the ATG and downstream of the ATPase domain were 

amplified from genomic DNA using Phusion high-fidelity DNA polymerase (New 

England Biolabs) and the primers in table 2.1. The inner primers were designed to 

incorporate RE sites SalI and NdeI, outer primers were then used to combine the first 

two PCR products. The ~2 kb fragment was cloned into the TOPO blunt II vector (Life 

Technologies) and confirmed via restriction digest. The vector and plasmid containing 

the resistance cassette, pLPBLP (Faix et al., 2004) were cut with SalI and NdeI and 

ligated to create a floxed Blasticidin cassette flanked by homologous arms to the gene 

of interest. Four constructs were created: pCR-Blunt-II-TOPO-Isw+Bsr, pCR-Blunt-II-

TOPO-Snf2a+Bsr, pCR-Blunt-II-TOPO-Snf2b+Bsr and pCR-Blunt-II-TOPO-Swr1+Bsr. 

Constructs were linearised, restriction enzymes heat inactivated and ethanol 

precipitated (1/10th volume 3M sodium acetate, 3 volumes 100% ethanol) prior to 

transformation. 

Target Forwards Primer (5'->3') Reverse Primer (5'->3') Target Coordinates

Isw Upstream ATAACATATTGTCGTGAAGG CATATGGCGGTCGAC   

AATATTGGCGGGTAAATTTG

Chr6: 2252855 - 

2253920

Isw Downstream GTCGACCGCCATATG 

TTGACAATAGTGGAAAGATG

TCTGGAAGTTCACCTTTATC Chr6: 2256451 - 

2257410

Snf2a Upstream CATGTTCAGTAATGTCAACG CATATGCGGCGCGTCGACATCT

TTTATTTATTTCGCTACC

Chr4: 2919477 - 

2920404

Snf2a Downstream GTCGACGCGCCGCATATGGGT

GAGTTGTGGGCATTG

GATCTCCAATTTATCGGTGG Chr4: 2924468 - 

2925333

Snf2b Upstream GGCCCTTGAAAGATATCGATAT

G

AACAGCGCGCATGTA 

ATGGAATAGACAGCAATAAGGG

Chr1: 4513841 - 

4512498

Snf2b Downstream ATTACATGCGCGCTGTTATCAT

TCAACGTCTTCATAAGG

TCTTCAGGAGAACGAGCAATC Chr1: 4506517 - 

4505624

Swr Upstream CGGATCCTATAGTTACAGATG CATATGCGG AGCGTCGACC 

GATGAACTTTCTCTTCTCTG 

Chr1: 465026 - 

466183

Swr Downstream GTCGACGCTCCGCATATG 

CTATCCATCTTATCAACGTATG

GAGTATTATCATCAACATCTACC Chr1: 469062 - 

469863

Table 2.1: Primer Pairs for Construct Generation. Underlined region of sequence 

highlights primer tail with complementary sequence and restriction sites.
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2.3.3 Dictyostelium Transformation

Dictyostelium were transformed via electroporation as previously described (Gaudet et 

al. 2007). Briefly, 107 Ax2 cells were washed twice in ice cold electroporation buffer 

(KK2 + 50 mM sucrose), and resuspended in 800 l before transferring to 4 mm 

electroporation cuvettes (Cell Projects). 15 g of linearised plasmid DNA was added, 

mixed and incubated for 10 min on ice. Cells were electroporated at 1 kV, incubated on 

ice 10 min, 8 l 0.1M MgCl2 added and incubated at 22c 15 min. For knockout 

transformations, cells were resuspended in 75 ml HL5 media with 100 g/ml 

streptomycin sulphate, transferred to 96 well plates and grown overnight. Media was 

exchanged for selective media containing 10 g/ml blasticidin after 24 hours, and every

2 days following until clones were confluent. Clones were then screened via PCR for 

the correct genotype. 

2.4  Knockout Screening

DNA was extracted from confluent clones using the rapid DNA extraction method 

described above (section 2.3). Primers (Table2.2) were designed to amplify regions 

spanning the insert-to-genomic border (+ve primers) or within the genomic region 

targeted for deletion (-ve primers). PCR was performed using GoTaq Green Master Mix

(Promega) and the following PCR program: 92c 1min, 52c 30s, 68c 1min x 30 

cycles, 10 min 68c final extension. Products were run on 1% agarose gels, clones with

bands from +ve primers and no band in –ve were considered knockouts.

Primer Set Forwards (5'->3') Reverse (5'->3')

Isw +ve GATAAAGCTGACCCGAAAGC CCAAAGTCTGGTTCCTCCTC

Isw -ve GATGCAGTTGTTGTTGGAGC AGATTGGTGTCTGCTTTGGT

Snf2a +ve GGACCAACCGATATTGTAATTC CTTGTTGAGAAATGTTAAATTGATCC

Snf2a -ve CACGTGATACCGAAGGTTATAG GTAGTTGATTGGAGTGGTGAAG

Snf2b +ve GATAAAGCTGACCCGAAAGC CGACCTCTTTAGTGATCCAAC

Snf2b -ve GCACCAGGTCAATTCAATGC TCTTCAGGAGAACGAGCAATC

Swr +ve GATAAAGCTGACCCGAAAGC GTTGTTTTGTAACAGTACCATATG

Swr -ve CCACCTAAACATACTCATATC GTTCCTCTAATAACTTTGATGG

Table2.2: Primers for Knockout Screening. Primers used for PCR screening of 

potential KO clones. 
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2.5  Western Blotting

Western blotting was performed for confirmation of Isw and double KO strains and 

assay of relative Isw protein levels. Cells were washed before lysis in 1x NuPAGE LDS 

Sample Buffer (Life Technologies) with 5% -mecaptoethanol and 1x protease 

inhibitors (Roche) and incubated at 70c for 10 min. Cell extract was loaded on either 

NuPAGE Novex 3-8% Tris-Acetate, or NuPAGE Novex 4-12% Bis-Tris Protein Gels 

(Life Technologies). Western blotting to a nitrocellulose membrane was carried out 

overnight at 13V and 4c using the XCell II Blot Module (Life technologies) and 

NuPAGE Transfer Buffer (Life Technologies) supplemented with 10% methanol. 

Membranes were blocked in 5% milk in TBST (tris-buffered saline + 0.1% Tween 20) 1 

hour at RT prior to primary antibody incubation in 5% milk TBST, overnight 4c. 

Membranes were washed three times in TBST and incubated with the appropriate 

secondary HRP-linked antibody for 2 hours at RT. Membranes were washed three 

times and incubated with SuperSignal West Pico Chemiluminescent Substrate (Thermo

Scientific), 5min RT. Membranes were exposed to Carestream Kodak BioMax MR film 

(Sigma-Aldrich) and developed, or imaged with the GeneGnome imager (Syngene). 

Band intensities were quantified using ImageJ software (Schneider et al. 2012).

Primary antibodies used: polyclonal anti Isw antibodies raised in rabbit (70-day 

protocol) using synthesized Isw peptides (peptide sequence: 

EEPDFGDLSKEEQDLKER, amino acid positions 906-923) (Perbio/Thermo Scientific; 

concentration 2.5 μg/ml), ChdA, ChdB and ChdC polyclonal antibodies were produced 

by Drs James Platt and Benjamin Rogers (Platt 2013; Rogers 2010; all used at 2.5 

μg/ml), monoclonal anti-RNA polymerase II (clone CTD4H8) antibody (Merck Millipore),

and monoclonal anti-actin (plant) (clone 10-B3) antibody (Sigma-Aldrich; used at 1 

μg/ml). 

2.6 Multinucleate Assay

WT and Swr cells were grown either in suspension or adhered to Nunc Lab-Tek II 

Chamber Slides (Thermo Scientific) for 5 days. Cells were fixed in 4% formaldehyde in 

phosphate buffered saline (PBS) for 15min, washed and stained with Concanavalin A 

(ConA) FITC conjugate at 10 ng/ml in PBS for 10 min, washed and stained with 300 

nM 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Life Technologies) in PBS 
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for 5 min, and washed. Imaging was carried out on an Olympus 1X71 inverted 

microscope and processed using a custom CellProfiler pipeline (Carpenter et al. 2006).

2.7 Time Lapse Development Assay

1.5 ml of KK2 agar was added to 6 well plates, 5 x 106 cells/condition were washed 

twice in cold KK2, resuspended in 1ml KK2 and added to each well. After 15min 

incubation to allow adherence, excess KK2 was aspirated and plate transferred to an 

Olympus 1X71 inverted microscope. Images were taken in 3 by 3 grid of each well 

every 2 minutes for 25 hours, and image stacks for each well combined with ImageJ 

(Schneider et al. 2012). 

2.8 Chemotaxis Assay

5 x 107 cells were washed twice in KK2 and placed in shaking suspension for 5 hours 

with 100 nM pulses of cAMP every 6 minutes. Cells were then diluted 1:4 in KK2 and 

added to a Zigmond chamber (Zigmond, 1988) (Neuro Probe), and a cAMP gradient 

established using 1 M cAMP and KK2 in respective wells. After 20 min incubation, 

cells were imaged every 6 seconds in 6 fields over 15min at 20x magnification using 

differential interference contrast (DIC) on an Olympus 1X71 inverted microscope. DIAS

3.4.2 image analysis software (Soll Technologies Inc.) was used to track cells and 

calculate their speed, directionality, polarity and chemotactic index parameters (Kay et 

al., 2008). A minimum of 100 cells was analysed per condition over at least 2 biological 

replicates. 

2.9   RNA Sequencing

2.9.1  mRNA Sequencing

Total RNA was extracted from WT and mutant cells following the Qiagen miRNeasy kit 

protocol, and polyA purified using Dynabeads mRNA DIRECT micro kit. RNA integrity 

was measured on a Bioanalyzer 2100 mRNA pico chip, only RNA with an RNA integrity

number (RIN) greater than 8 were taken into final library preparations. RNA sequencing

libraries were prepared following the TruSeq® Stranded mRNA LT kit (Illumina) 

protocol. Libraries were quanitified using Qubit and KK4824 Illumina KAPA Library 

Quantification Complete kit. Sequencing was conducted on the NextSeq500 (Illumina) 

with NextSeq® 500 Mid Output v2 Kit reagents to produce 75 bp paired end reads. 
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2.9.2  RNAseq Bioinformatics

Data was obtained from Dr James Platt (Platt et al., 13) for CHD mutants, and 

analysed in parallel with sequenced Isw- and WT data from the current study. Reads 

were aligned to the Dictyostelium genome from Dictybase (Basu et al. 2013) using 

Tophat2 (Trapnell et al., 2010) with standard parameters. Gene counts were quantified 

using HTseq-count (Anders et al. 2015) against the Dictybase reference GFF release 

2.12. The DESeq2 package was used for normalization and detection of differentially 

expressed genes (Anders and Huber, 2010). The R statistical project (R Development 

Core Team 2016) was used for statistical and graphing purposes throughout. 

2.10  Nucleosome Mapping

2.10.1  Chromatin Digestion

Dictyostelium chromatin digestion was carried out following the method developed in 

Platt 2013. Briefly, 1x108 cells were washed once in ice cold KK2 and once in 100mM 

sorbitol, resuspended in 400l digestion buffer (100 mM sorbitol, 50 mM NaCl, 10 mM 

Tris-HCl (pH 7.5), 5 mM MgCl2, 1 mM CaCl2, 1 mM -mercaptoethanol, 0.5 mM 

spermidine, 0.1% NP-40). Permeabilised cells were transferred to tubes containing 300

U micrococcal nuclease (MNase, Affymetrix) and incubated for 2 min at 37c before 

adding 40l stop solution (5% SDS, 250mM EDTA) and vortexing to lyse cells. DNA 

was phenol/chloroform extracted, RNAse A treated (15l, 10mg/ml) at 37c 30 min. 

DNA was phenol/chloroform extracted again and ethanol precipitated before air drying 

and resuspending in TE buffer (10mM TRIS pH 8.0, 1mM EDTA). 10l of each sample 

was run on 1.5% agrarose gels to check digest extent. Sequencing library preparation 

was performed using the Ion Plus Fragment Library Kit (Ion Torrent) and Ion Chef 

workflow system (Ion PI Template OT2 200 kit v3). 200 bp single end reads were 

sequenced on the Ion Proton system using (Ion Torrent; Ion PI Chip Kit v2 and Ion PI 

Sequencing 200 kit v3). 

2.10.2  MNase-seq Bioinformatics

MNase-seq reads were aligned against the Dictyostelium reference genome (Basu et 

al. 2013) using Bowtie-1.0.1 (Langmead et al. 2009) with parameters: -t -n 0 --trim3 14 
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--maxins 5000 --fr -k 1 --best -p 2, for Illumina PE data, and parameters: -t -n 2 -k1 

--best -p5, for Ion Torrent SE data. Nucleosome mapping was conducted as described 

in Platt 2013, or using the analysis pipeline developed in the present study. Briefly, the 

following analysis steps were performed: fragments were size selected to within 120-

180 bp, and fragment mid-points/dyads determined. Final 'nucleosomal' fragments 

were defined as regions spanning one third of total fragment size centered on the 

fragment dyad. Nucleosome scoring was performed by summing total fragment 

overlaps within 5 bp genomic bins. The average size of fragments mapping to each bin 

was recorded as the fragment footprint size of the region. Nucleosome maps were 

normalised to total mapped fragment count across the genome. For peak calling: 

Gaussian smoothing was applied to nucleosome maps and first derivative of Gaussian 

(FDoG) and Laplacian of Gaussian (LoG) convolutions performed. Local minima, 

maxima and peak edges were identified as zero-crossing points in the FDoG and LoG 

products respectively, and regions fitting the expected peak profile were defined as 

nucleosome positions. Consensus nucleosome positions were first identified in 

averaged WT maps before identifying matched peaks in test samples by searching for 

local minima and maxima within 200 bp of the reference nucleosome region. All 

downstream analyses were performed on these peak sets, and only matched digest 

samples directly compared. All downstream visualization and statistical analyses were 

performed in R (R Development Core Team 2016).

2.11  Analysis Scripts

Scripts used for analysis of RNA-seq and MNase-seq, and plotting functions for 

downstream analysis are available at:  https://github.com/MERobinson/phd_scripts.
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Chapter 3:

Characterising the Roles of Dictyostelium ATP-

Dependent Chromatin Remodelling Complexes

in Growth, Development and Chemotaxis
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3.1  Introduction

Mutagenic screens in Dictyostelium discoideum for strains displaying lithium resistance

and late-stage developmental defects identified a type III CHD protein named ChdC 

(Keim-Reder 2006; Platt 2013). Subsequent bioinformatic analysis identified a further 

ten SNF2 family protein-coding genes present in the Dictyostelium genome. Studies 

conducted in both the Müler-Taubenberger lab (unpublished) and our own (Platt 2013) 

led to the generation and characterisation of knock-out cell lines for all three CHD 

proteins: ChdA, ChdB and ChdC, and Arp8 – an essential component of the Ino80 

complex (Shen et al. 2003; Joseph et al. 2008). Each of these mutant cell lines 

exhibited distinct phenotypic effects: in ChdA- the slugging stage of development was 

extended and the speed and directionality of chemotaxis towards cAMP was inhibited. 

ChdB loss caused only a minor inhibition of proliferation in shaking culture, while ChdC-

displayed severe phenotypic effects - halting development at the mound stage and 

exhibiting a similar level of chemotactic inhibition to ChdA-. Finally, loss of Ino80 activity

led to a novel chemotactic inhibition at high but not low cAMP concentrations (Rogers 

2010). Genome-wide transcriptional profiling through RNA-sequencing found that 

respective mutant phenotypes were explained by mis-regulation of key signalling 

pathways, such as the de-repression of inositol signaling genes observed in Arp8 null 

cells.  

In order to establish Dictyostelium as a model system for further functional studies of 

chromatin remodeling complexes, I aimed to more fully characterise the role of the core

remodelers involved in transcriptional regulation. I first re-examined the structure of the 

Dictyostelium SNF2 family to identify any previously unannotated SNF2 family 

members, then generated knock-out mutant cell lines for the remaining, un-studied 

core chromatin remodelers. Phenotypic profiling of cell growth, development and 

chemotaxis was then performed, and compared with results from Arp8 and CHD family 

mutants. These studies provide insight into the molecular pathways potentially 

regulated by the core remodelers and the degree of redundancy between remodeling 

complexes. 
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3.2  The SNF2 Family in Dictyostelium

Eleven SNF2 family proteins were previously identified in Dictyostelium (Platt et al. 

2013) including members of the four core remodeler families: three CHDs (ChdA; 

DDB_G0284171, ChdB; DDB_G0280705 and ChdC; DDB_G0293012), two 

SWI2/SNF2 (Snf2a; DDB_G0285205 and Snf2b; DDB_G0271052), one ISWI (Isw; 

DDB_G0292948), and two INO80/SWR (Swr1; DDB_G0267638 and Ino80; 

DDB_G0292358) (Platt et al. 2013). Three SNF2 proteins more distantly related to 

ChdC were also identified (Mot1; DDB_G0286219, Rad54a; DDB_G0282997 and 

Rad54b; DDB_G0285117). In order to confirm that all Dictyostelium SNF2 proteins 

have been identified, homology searches were conducted with HMMER3, a profile 

hidden Markov model (HMM) based algorithm (Eddy 1998). Profile methods use 

positon-specific scoring models, as opposed to the position-independent scorings of 

pairwise algorithms such as BLAST, making them more sensitive; Hidden Markov 

models have the additional benefit of probabilistically modeling the “hidden” state -  i.e. 

the true ancestral sequence, and provide model gap and insertion scores rather than 

using arbitrary penalties (Eddy 1998).  A HMM profile was generated from the Pfam 

SNF2_N domain seed sequence and used to search the Dictyostelium protein 

database (Basu et al. 2013). This produced a list of 21 putative proteins (E-value < 

0.05), including the 11 previously reported (Platt et al. 2013), plus  an additional nine 

potential SNF2 members. To visualise the phylogenetic relationships between the 

putative Dictyostelium SNF2 members and human, mouse and Drosophila homologs, 

the full SNF2 protein sequences from the four species were aligned using MUSCLE 

and a maximum likelihood phylogenetic tree generated to explore SNF2 family 

topology (Fig 3.1). 

The eleven reported SNF2 proteins cluster with their previously annotated sub-family 

homologs, and seven putative proteins cluster into distinct sub-families: FUN30 

(DDB_G0267556), ERCC6 and ERCC6-like (ercc6 and pich respectively), ATRX 

(DDB_G0293120), SMARCAL (DDB_G0281559), SHPRH (DDB_G0287171) and 

RAD5 (DDB_G0272082). The subfamily groupings for helE and DDB_G0282115 

remain unclear and may require alignment with a larger range of organisms to classify. 

The SNF2 family proteins play a large range of roles as transcription factors, repair 

proteins and maintenance of structural chromatin (Flaus et al. 2006); however in the 

present study we focus on the roles of SNF2 members known to be primarily involved 

in transcriptional regulation through their ATP-dependent chromatin remodeling activity:
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ChdA, ChdB, ChdC, Isw, Snf2a, Snf2b, Swr and Ino80. 

  Fig3.1: Structure of the SNF2 

Family in Dictyostelium.  

Full-length SNF2 family proteins 

present in the Uniprot database 

from S.cerevisiae, D. 

melanogaster and H. sapiens 

were aligned with identified SNF2

proteins in D. discoideum. An 

un-rooted maximum likelihood 

tree was constructed from 

alignments. Clustered 

subfamilies containing one or 

more identified Dictyostelium 

proteins are highlghted, and 

subfamily groupings (as 

determined by Flaus et al. 2006) 

are indicated as grey boxes.

DICTY =  D. discoideum

YEAST = S. cerevisiae

DROME = D. melanogaster

HUMAN = H. sapiens
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3.3  Generating Remodeler Null Cell Lines

To allow phenotypic characterisation and comparison with existing remodeler mutants, I

aimed to generate null mutants for Isw, Snf2a, Snf2b and Swr. Constructs were 

designed as outlined in Figure3.2A for homologous recombination-mediated deletion of

a region spanning from upstream of the ATG translational start site to downstream of 

the catalytic SNF2_N domain. To generate constructs, DNA sections of approximately 

1kb flanking the target region were PCR amplified from genomic DNA. Primer tails 

contained complimentary overhangs to allow fusion of the two regions in a second 

round of PCR, and restriction sites for NdeI and SalI. Fused DNA segments were 

cloned into the TOPOII vector and a floxed blasticidin resistance cassette from pLPBLP

(Faix et al. 2004) was inserted between flanking sequences via restriction digest with 

NdeI and SalI. Knockouts were generated in the Ax2 strain background and screened 

by PCR to confirm both deletion of target region and insertion of resistance cassette 

(Figure 3.2B). Multiple independent clones were successfully generated for Isw-, Swr1- 

and Snf2a-, however no Snf2b- clones were obtained from five separate transfection 

attempts, suggesting possible lethality of Snf2b KO. 

A custom antibody was raised against Dictyostelium Isw N-terminus peptides to further 

validate the Isw null mutant. Western blotting performed on WT and mutant cell lysates 

reconfirms the loss of Isw protein (Figure 3.2C). The antibody was also used to profile 

the expression pattern of Isw throughout development. WT Ax2 cells were plated on 

nitrocellulose membranes under nutrient depleted conditions and samples taken every 

two hours over 24 hours for western blotting. Blots were probed with the custom anti-

Isw and control anti-actin antibodies followed by quantitation of band intensities and 

normalisation to peak abundance (Fig 3.3D). Isw is expressed throughout most of 

development with peak abundance at 14 hours - approximately corresponding to the 

late mound stage, and decreasing to very low levels by 22 hours. To compare Isw 

protein levels with transcript levels, the  the normalised read counts from publicly 

available RNA-seq data at various developmental stages was examined (Rosengarten 

et al. 2015; Basu et al. 2013). Protein abundance closely shadows relative expression 

levels throughout development, with peak transcript abundance at 12h post-starvation.
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Fig3.2: Generation of Remodeler Mutants.

A) Diagram of the strategy used for homologous recombination mediated deletion of regions 

spanning from upstream of the ATG to downstream of the catalytic SNF2_N domain to generate

remodeler mutants. Red and green arrows indicate primer targets for negatve [i.e. un-

recombined] and positive [i.e. recombined] PCR primer pairs respectively. B) Mutant clones and

WT controls screened for deletion by PCR amplification of genomic DNA with primers as 

indicated in A. C) Western blot for Isw protein in WT and isw- cells. D) Proteins levels of Isw 

throughout development (upper), band intensities were quantified and normalised to actin levels

(middle) and plotted relative to peak protein abundance. Protein levels are compared to publicly 

available RNAseq data for Isw RNA expression in development (Rosengarten et al. 2015). 
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3.4  Differential Growth Defects of Remodeler Mutants

Mis-expression of metabolic genes in ChdC- causes growth inhibition in shaking 

culture, resulting in a replication rate approximately twice that of WT cells, ChdA- and 

ChdB- on the other hand have little impact (Platt et al. 2013). To identify potential 

involvement of the remaining remodelling proteins in metabolic signalling pathways, all 

remodeler null cell lines and WT controls were grown in shaking culture from an initial 

dilution to ~1x106 cells/ml and cell numbers monitored for 72 hours (Figure3.3). While 

ChdA-, ChdB-, Isw-, Snf2a- and Arp8- all exhibit no significant change in replication rate, 

Swr loss results in a doubling time approximately three fold higher than the WT. 

In addition to reduced proliferation exhibited by Swr- cells grown in shaking culture, it 

was observed that adherent culture of Swr- led to the production of large, non-uniform 

cells not apparent during shaking culture, suggestive of a cytokinesis defect dependent

upon culture conditions. Swr- and WT cells were thus diluted to ~1x105 cells/ml and 

grown either in shaking culture or adhered to glass coverslips; after five days cells 

grown in shaking suspension were transferred to glass coverslips and incubated for 

one hour to allow adherence. Cells from both conditions were washed, fixed and 

stained with DAPI to mark nuclei, and concanavalin A (ConA) to mark the cell 

membrane. Swr- mutant cells grown in shaking culture exhibit no change in the average

number of nuclei/cell, adherent culture conditions on the other hand produced large, 

multi-nucleated cells (Figure3.4). To our knowledge this is the first example of an 

adherence-dependent multi-nucleated phenotype. 

46



Fig3.3: Effects of Remodeler Loss on Cell Growth. 

WT and remodeler mutant cell lines were grown in shaking culture from an initial dilution to 

1 x106 and cell number measured every 24h. A) Cell counts normalised to starting 

concentration and log transformed. B) Doubling times calculated from log phase growth. C)

Imaging of WT and Swr- cells grown in adherent culture stained with DAPI and 

concanavalin A (conA) to mark nuceli and cell membranes respectively. D) Quantification of

the number of nuclei/cell for WT and Swr grown in either adherent or shaking culture 

conditions. Experiments conducted on three cones per condition with the exception of Swr, 

for which only two clones were isolated. 
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3.5  Detecting Developmental Roles of Chromatin Remodelers

Upon nutrient depletion Dictyostelium enters a multicellular development cycle, 

whereby ~105 cells will aggregate into a mound before differentiating to ultimately form 

the fruiting body (FB). Previously studied remodeler mutants display distinct 

developmental defects; the onset of aggregation is delayed ~1-2 hours in ChdA- and 

ChdB-, and terminal differentiation is further delayed in ChdA-, extending the migratory 

slug stage (Platt et al. 2013). ChdC null cells exhibit the strongest development defect 

with a delay of ~2 hours during aggregation and developmental arrest at the mound 

stage (Platt et al. 2013). Finally, Arp8- cells display an aggregation delay of ~5 hours 

(Rogers 2010). To establish the potential roles of Isw, Snf2a and Swr in development, 

cells were plated on KK2 agar under nutrient depleted conditions and imaged over 24 

hours (Figure 3.5A).

Isw null cells exhibited a minor delay (~30 min) in the onset of aggregation compared 

to WT. Although only very slight, this delay was consistently observed for all replicates. 

Formation of loose mounds and slugging also appear proportionally delayed, but with 

no defects in terminal morphology were observable. Snf2a disruption also causes a 

minor (~30 min) delay at all stages. Additionally, a sub-population of cells fails to enter 

aggregation with a high proportion of individual, unaggregated cells still observable at 

12h and 24h in both Snf2a- (Figure 3.5A). Arp8 null lines display a similar aggregation 

defect, and in both cell lines it was observed that the unicellular population sometimes 

enter a second aggregation stage at ~12 hours post-starvation. Distinct streams are 

not observed in the Swr null condition, with cells forming a greater number of small 

mounds. Imaging of terminal structures at 48h post-starvation reveals that Swr- also 

form stunted fruiting bodies with reduced height (Figure3.5B), likely caused by reduced 

cell numbers per mound.  
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Fig3.4: Developmental Defects in Remodeler Mutants. 

A) WT and remodeler null mutants were grown in nutrient depleted conditions on KK2 agar 

and imaged over 24h. Developmental timing and gross morphological defects are observed

by aligning frames by time-point post starvation.

B) Images of terminal morphology at 48h post-starvation for cells grown on KK2 agar as in 

A (scale bar = ~2mm).
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3.6  Chemotaxis Defects Displayed by Remodeler Mutants

Upon starvation, Dictyostelium cells chemotaxis towards cyclic adenosine 

monophosphate (cAMP), and propogate the cAMP signal via its secretion, leading to 

streaming and aggregation of individual cells into multicellular mounds. The conditions 

of early development can be simulated by culture in nutrient free medium with 

exogenous cAMP pulses for 5 hours; subsequent assay of individual cell migration in a 

cAMP gradient and quantification of movement speed, polarity (cell width/height), 

directionality (Euclidean distance/accumulated distance) and chemotactic index (the 

cosine of angle between the direction of the cAMP gradient and the path of migration) 

allows identification of defects in the migratory response to cAMP free of confounding 

factors related to signal propagation. ChdA-, ChdC- and Ino80- have all been reported 

to display significant chemotactic deficiencies (Platt et al. 2013; Rogers 2010), 

indicative of the underlying transcriptional mis-regulation of genes in inositol and cAMP 

signaling pathways. 

To examine whether newly generated remodeler mutants may also be involved in the 

regulation of chemotactic signalling, chemotaxis assays were performed in triplicate 

and speed, polarity, directionality and chemotactic index (CI) parameters measured for 

a minimum of 100 cells per condition (Fig3.6). Snf2a-, Swr1- and Isw- all display 

significant chemotactic defects, notably however migratory ability is not lost entirely in 

any of the assayed cell lines. Snf2a loss causes a reduction in directionality (-0.2 ± 

0.09, p = < 1 x 10-6) and CI (-0.26 ± 0.2, p = 0.01); Swr loss also causes cells to 

migrate less effeciently towards the chemoattractant source (directionality -0.32 +/- 0.1,

p < 1 x 10-6; CI -0.4 +/- 0.19, p < 1 x 10-6), and a decrease in cell polarity (-0.5 +/- 0.33, 

p = 2x10-3). Finally, Isw cells exhibit an significantly increased migration speed (+4.8 +/-

2.5μm/min, p = 1x10-6). Remodeler loss thus causes frequent perturbation of 

chemotactic signaling, however whether this is caused by direct transcriptional 

regulation or indirect effects remains unclear. Furthermore, the developmental delays 

observed in remodeler mutants may contribute to chemotactic phenotypes by 

extending the starvation time required for cells to progress to chemotactic competence.
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Fig3.5: Chemotactic Phenotypes in Remodeler Mutants.

WT and remodeler null mutants were pulsed with cAMP for 5h in nutrient depleted 

conditions before imaging their migration with a cAMP gradient over 15min.

A) Traces from twenty randomly selected cells for each condition.

B) Speed, polarity, directionality and chemotactic index (CI) were measured from a 

minimum of 100 cells/condition. Significance tested by one-way ANOVA with Tukey's post-

test (** = p < 0.01, *** = p < 0.001), intervals indicate 95% CI. 
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3.7  Summary

Phylogenetic analysis of the SNF2 family has shown that Dictyostelium possess a 

diverse repertoire of putative remodelers. The reproduction of subfamily groupings 

identified previously (Flaus et al. 2006; Platt et al. 2013) indicates the robust 

relationships within these groupings. By identifying a number of interesting potential 

homologs, and generated mutant cell lines for the core CRCs involved in transcriptional

regulation we have established Dictyostelium as a useful model for the study of 

remodeler function. 

All remodeler mutants exhibit a unique combination of phenotypes, indicating that 

despite expansion of some remodeler sub-families compared to other unicellular 

organisms, all remodelers possess at least partially non-redundant functions. 

Nonetheless, phenotypic severity varies widely, and interestingly, the severity of 

phenotypic defects appears roughly consistent across assays, with ChdC and Swr loss 

causing the strongest defects to growth, chemotaxis and development; and ChdB, Isw 

and Snf2a causing the weakest. Whether this is indicative of the level of chromatin 

disruption or perhaps simply caused by transcriptional mis-regulation of key genes in 

individual remodeler mutants remains unclear, and will require profiling of the 

transcriptional and chromatin defects in a wider range of remodeler mutants to 

determine. 
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Chapter 4:

Dictyostelium Spacing Remodelers Play

Distinct Roles in the Maintenance of

Chromatin Structure
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4.1  Introduction

Micrococcal nuclease digest sequencing (MNase-seq) followed by bioinformatic 

nucleosome mapping has previously been employed to study the roles of CHD and 

ISWI sub-family proteins in maintaining chromatin structure across the genome of 

yeast (Gkikopoulos et al. 2011; Hennig et al. 2012). While a loss of canonical 

nucleosome structure is observed upon combinatorial loss of the spacing remodelers, 

little global effect of individual remodeler KO was observed, and their specific in vivo 

roles remains poorly understood. However these studies examined the globally 

aggregated effects of remodeler loss (Gkikopoulos et al. 2011; Hennig et al. 2012), 

which may mask defects at gene subsets and individual nucleosomes. Furthermore, 

current nucleosome mapping methodologies such as iNPS and DANPOS generally do 

not examine nucleosome footprint size (Chen et al. 2013; Chen et al. 2014), which may

provide insight into the effect of remodeler loss on nucleosome structure.

The phenotypic profiling of Dictyostelium remodeler mutants conducted during this 

study has demonstrated that ChdA, ChdC and Isw proteins are not fully redundant. 

Furthermore, previous analysis of nucleosome profiles from ChdC null cells in our lab 

revealed a specific role for this type III CHD protein in regulating nucleosome repeat 

length (NRL) at a subset of developmentally regulated genes (Platt 2013). We 

postulated that the remaining members of the CHD and ISWI families also play 

important, non-redundant roles in regulating chromatin structure not readily apparent 

from examination of the global average of structural defects, as attempted previously.  

To analyse the individual roles of spacing remodelers I aim to conduct MNase-

sequencing on the newly generated Isw null cell line, which together with previously 

generated MNase-seq data from ChdA, ChdB and ChdC cell lines will provide 

information on the structural defects caused by all spacing remodelers in Dictyostelium.

Through development of novel bioinformatic methods and detailed analysis of the 

chromatin profiles of the previously un-studied Isw-, ChdA- and ChdB- mutants, and 

comparison with published results from ChdC- mutants, I aim to provide insight into the 

specific nucleosome parameters maintained by each individual remodeler. 
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4.2  MNase-Sequencing of Isw Null Mutants

In order to reduce the costs and increase the efficiency of MNase-sequencing I first 

adapted the Dictyostelium MNase-seq protocol established previously on the Illumina 

HiSeq platform (Platt 2013) for compatibility with Ion Torrent sequencing. Ion Torrent 

sequencing uses semiconductor chips consisting of ion sensors contained within 

microwells to detects the pH change caused by incorporation of un-modified 

nucleotides, as opposed to the optical detection of flourescently labeled nucleotides on 

Illumina platforms (Rusk 2011). The original MNase-seq protocol consisted of in vivo 

digestion of chromatin by incubation of permeabilised cells with limiting concentrations 

of MNase to produce a range of protected fragments, which were then size selected to 

within 50-1000 bp and paired-end (PE) reads produced through Illumina sequencing to 

allow mapping of protected fragments back to the genome. By restricting the size range

of selected digest fragments to within 75-200 bp, the nucleosomal fraction (~120-180 

bp) is encompassed while allowing reduced read numbers for the same coverage 

depth. Furthermore this size range is within the length of Ion Torrent 200 bp reads, 

allowing full length single end (SE) sequencing of fragments. The adapted technique 

was applied to Isw- and WT cell lines grown in shaking culture. A summary of all 

MNase-seq data sets analysed in the present study is given in Table4.1. 
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Fig4.1: MNase-Sequencing Protocol on Illumina and Ion Torrent Platforms. 

Diagrammatic outline of the different protocols used for MNase-sequencing with Illumina 

and Ion Torrent platforms: common steps are displayed centrally while differences are 

highlighted in red for each platform. Key: grey lines = DNA, red lines = adapters, blue lines 

= sequence reads, grey circles = nucleosomes, turquoise circles = transcription factors, SE 

= single end, PE = paired end.  

56



Sample Experiment Platform Aligned
Reads (M)

Nucleosomal
Reads (M)

Previously
Analysed?

WT rep1 ExpA Illumina HiSeq 92.7 9.7 YES

WT rep2 ExpA Illumina HiSeq 222.3 22.1 YES

ChdC rep1 ExpA Illumina HiSeq 77.4 8.8 YES

ChdC rep2 ExpA Illumina HiSeq 201.7 21.8 YES

WT rep3 ExpB Illumina HiSeq 185.8 15.5 NO

WT rep4 ExpB Illumina HiSeq 121.5 9.8 NO

ChdA rep1 ExpB Illumina HiSeq 142.2 12.2 NO

ChdA rep2 ExpB Illumina HiSeq 119.0 10.3 NO

ChdB rep1 ExpB Illumina HiSeq 122.7 11.0 NO

ChdB rep2 ExpB Illumina HiSeq 152.4 14.1 NO

WT rep5 ExpC IonTorrent Proton 7.7 3.1 NO

WT rep6 ExpC IonTorrent Proton 10.8 5.8 NO

WT rep7 ExpC IonTorrent Proton 6.7 3.5 NO

Isw rep1 ExpC IonTorrent Proton 7.9 3.3 NO

Isw rep2 ExpC IonTorrent Proton 5.1 2.6 NO

Isw rep3 ExpC IonTorrent Proton 8.5 4.2 NO

Table4.1: MNase-seq Samples Summary. 

Information on all MNase-seq samples used in the current study. Samples are grouped into

experiments with chromatin digests and sequencing conducted by the same individual 

under the same conditions in a common time period. Platform = sequencing platform used 

for each sample. Aligned reads = millions (M) of uniquely aligned reads. Nucleosomal 

reads = millions of uniquely aligned reads in 120-180 bp size range. Previously analysed = 

whether the resultant data sets have previously been analysed. 

57



4.3  Generation and Comparison of WT Nucleosome Maps

Nucleosome maps are produced by alignment of MNase-protected fragments to the 

reference genome, size-selecting fragments within the nucleosomal range (120-

180bp), and scoring of read mid-points, representing nucleosome dyad locations 

(Fig4.2A). To confirm that platform-specific errors do not introduce appreciable non-

biological variation into resultant nucleosome maps, I first adapted the existing 

bioinformatic pipeline for compatibility with both PE and SE data, and applied it to all 

seven WT replicates from the three experiments (ExpA-C) conducted in our lab. 

Locally, nucleosome positions are faithfully re-produced between replicates, however 

changes in relative peak-heights are observed between experiments. Additionally, 

variability in the distribution of dyad locations around average nucleosome positions 

produces significant noise, complicating the application of peak calling algorithms for 

the identification of average nucleosome locations (Fig4.2B). 

To globally compare reproducibility, nucleosomes were scored within 10 bp windows 

across the genome for all seven WT replicates and Spearman's correlation coefficients 

calculated between maps (Fig4.3A). Closer correlation is observed between replicates 

within experimental runs than between separate experiments, however this inter-

experiment variation is not caused by platform-specific changes. For example, closer 

reproducibility is observed between ExpA and ExpC than ExpA and ExpB. 

I next examined the average nucleosome structure around gene boundaries by aligning

all genes (n = 12,964) by their gene start or end position and calculating average 

nucleosome scores within a 2,400 bp window (Fig4.3B). All replicates reproduce the 

canonical average nucleosome structure, with nucleosome depleted regions (NDR) 

flanking gene boundaries, a strongly positioned +1 and terminal nucleosome (TN), 

followed by common average nucleosome positions with decreasing uniformity moving 

into the gene body. ExpB replicates however display increased average nucleosome 

occupancy around the NDR, and this effect is also observed at the individual gene level

(Fig4.2B). A similar phenomenon is obsevred in yeast cells under differing levels of 

MNase-digestion, where an MNase-sensitive particle, often termed the fragile 

nucleosome, is lost from the NDR under higher MNase concentraions (Xi et al. 2011; 

Mieczkowski et al. 2016). The inter-experiment variation observed in our data is 

therefore likely caused by variable digestion conditions. Further analyses are restricted 

to comparisons between matched sample digests to avoid this confounding issue. 
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Fig4.2: Nucleosome Mapping of WT Replicates. 

A) Diagram of the main steps involved in mapping MNase-seq reads to produce genome-

wide nucleosome maps. 

B) Nucleosome maps of all seven WT replicates focused on the gcdh gene region 

(DDB_G0283411). 
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Fig4.3: Reproducibility of Nucleosome Mapping. 

A) Correlation matrix of Spearman's rank correlation coefficients calculated from 

comparison of 10bp windows across genome between WT replicates. Sequencing platform 

and experiment is indicated for each replicate.

B) Average nucleosome score profiles of WT replicates around annotated gene start and 

end positions (± 1200 bp) for all Dictyostelium genes (n = 12,964). NDR = nucleosome 

depleted region; +1, +2, etc. = average nucleosome positions; TN = terminal nucleosome.
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4.3  Optimising Nucleosome Scoring

To increase the signal to noise ratio (SNR) of nucleosome maps I aimed to develop an 

improved nucleosome scoring algorithm. Multiple published algorithms are available for

nucleosome scoring that employ the common approach of extending reads from the 

nucleosome dyad by half of the canonical nucleosome footprint size (75 nt; e.g. Zhang 

et al. 2008,  iNPS (Chen et al. 2014) and DANPOS (Chen et al. 2013)), thus increasing

the SNR by reducing data loss (Zhang et al. 2008). However these algorithms suffer 

from three main issues: 

Firstly, due to the prevalence of short SE mono-nucleosomal MNase-seq 

methodologies, dyad positions are commonly estimated by either shifting reads 

by half of the canonical nucleosome footprint size (i.e. 75 bp; Zhang et al., 

2008) or by estimating nucleosome size based on the distribution of reads from 

the positive and negative strands (Chen et al. 2013). However inaccurate 

fragment size estimation can introduce false positive errors (Chen et al. 2013), 

and further prevents the study of nucleosome footprint size variation, which has 

recently been suggested to be indicative of promoter regulation (Kubik et al. 

2015). As our data consist of either PE or long SE reads, the exact fragment 

mid-points can be determined, allowing increased accuracy of nucleosome 

mapping and the possibility to studying any potential effects of remodeler loss 

on nucleosome size or stability. 

Secondly, smoothing functions are routinely applied to nucleosome maps to 

improve the SNR, such as the Epanechnikov kernel density estimate from the 

original pipeline (Kent et al. 2011; Platt 2013). Assumptions about the 

underlying distribution used by many of these approaches can introduce peak-

shape biases and artefacts, and due to use of peak-shape parameters to study 

chromatin changes such manipulations may introduce errors. 

Finally, common nucleosome mapping algorithms use a hard-coded read 

extension of 75 nt, however according to the Nyquist-Shanon sampling theorem

- which states that sampling frequency must be a minimum of twice the 

frequency of the signal of interest to allow accurate pattern reconstruction, this 

limits theoretical resolution to 150 bp. While this is sufficient for individual 

phased nucleosomal arrays, overlapping peaks produced from positioning 
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variation across the cell population would not be distinguishable.   

In order to improve the SNR while avoiding the issues highlighted above, I developed a

nucleosome scoring algorithm that utilises precise nucleosome mid-points to accurately

map dyad positions and allow dynamic read extension based on fragment lengths, 

while also mapping average footprint sizes globally. To determine the effect of read 

extension on our own data, two sub-samples of 5 million reads were randomly selected

from WT rep1 chromosome 1 and nucleosome scoring conducted with read extension 

lengths between 0 and 70 nt. Spearman's rank correlation coefficients are plotted 

alongside the theoretical resolution limit for neighbouring peaks (Fig4.4A). While the 

robustness of resulting maps is evidently improved by increased read lengths, this 

benefit is reduced above ~40-50 bp. To provide optimal balance between the SNR and 

nucleosome resolution, the nucleosome scoring algorithm was designed to dynamically

extend reads from the dyad position by one third of total fragment length, providing a 

nucleosome resolution of ~100 bp. 

Nucleosome profiles were re-mapped with the optimised algorithm and a correlation 

matrix between WT samples was calculated using the same method described 

previously (Fig4.3A) to demonstrate the improvement in reproducibility of nucleosome 

scoring (Fig4.4B). Significantly increased correlations are observed between all 

samples (e.g. Fisher's r-to-z transformation z = 630, p ≈ 0 for WT rep1 vs. WT rep2), 

and are also evident at the individual gene level (Fig4.4C). Importantly, the highly 

robust nucleosome signals generated by this algorithm negate the need to apply a 

smoothing function for additional de-noising, allowing more accurate measurement of 

individual nucleosome peak parameters.
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Fig4.4: Optimising Nucleosome Scoring. 

A) WT rep1 chromosome 1 reads were sub-sampled and mapped with a range of 

extension lengths from the dyad using the optimised algorithm developed here, and 

Spearman's ρ scores calculated and plotted alongside the theoretical resolution limit of 

neighbouring peaks. 

B) Nucleosome scoring was compared genome-wide between WT replicates mapped with 

either the original (lower panel) or optimised (upper panel) scoring algorithms. Spearman's 

ρ values are plotted as a heatmap with experiment and sequencing platform indicated. 

C) Nucleosome mapping for an example gene, scored with either the original (blue) or 

optimised (black) algorithm.  
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4.4  Remodeler Loss Leads to Distinct Global Chromatin Changes

The optimised nucleosome mapping methodology was applied to all WT and mutants 

samples, including re-mapping of the previously analysed ChdC data to allow 

comparison. To detect any gross global changes to chromatin structure upon remodeler

loss, average gene start profiles were produced for Isw-, ChdA- and ChdB- cell lines, 

and compared with the known profile of ChdC- mutants (Fig4.5). All conditions retain 

the canonical structure immediately around the gene boundary, with structure of the +1 

nucleosomes and NDR regions largely unaffected by remodeler loss. However distinct 

changes relative to matched WT samples are observable for all spacing remodeler 

mutants. 

Compared to the characteristic shift in nucleosome repeat length upon loss of ChdC, 

the ChdA-, ChdB- and Isw- mutants do not exhibit uniform spacing changes. ChdA and 

ChdB KO cause reciprocal changes in peak height between genic and intergenic 

regions, suggesting either opposing effects on occupancy or differing localisation of 

activity. Isw- on the other hand exhibits a complete loss of canonical structure across 

the gene body following the +2 nucleosome. 

While global spacing defects such as in ChdC- are easily interpreted, changes in 

averaged peak heights and loss of canonical nucleosome structure can be caused by 

multiple underlying mechanisms. Possible changes include a shift in nucleosome 

positioning relative to the TSS at individual genes while maintaining the nucleosome 

repeat length (NRL); changes in the uniformity of nucleosome positioning at a given 

locus across the population of cells; or genuine changes in nucleosome occupancy. To 

analyse the underlying chromatin changes causing the average nucleosome profile 

defects displayed by ChdA-, ChdB- and Isw-, an alternative analysis method is required 

to de-convolute these interwoven components.
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Fig4.5: Global Chromatin Defects in Remodeler Mutants. 

Nucleosome scores were summed within ±1,200 bp of the ATG start site for 12,964 

annotated genes in the Dictyostelium genome and normalised to total score within the 

window. Profiles are plotted separately for each remodeler mutant condition versus 

matched WT controls.
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4.5  Improving Nucleosome Peak Calling

Peaks in nucleosome maps represent the population-level distribution of nucleosome 

positions; by measuring the shape properties of these nucleosome distributions it is 

possible to gain insight into the regulation of nucleosome structure at individual 

genomic loci. However accurate identification of the boundaries and summit 

coordinates for each peak is critical for accurate measurement of these properties. The

original pipeline utilised a simple thresholding approach to call summit positions 

(Fig4.5A), however the performance of this method has not been previously validated, 

and does not allow for boundary detection. To benchmark the performance of this 

method relative to publicly available peak-calling algorithms I selected three common 

nucleosome peak callers: iNPS (Chen et al. 2014), MACS2 (Zhang et al. 2008) and 

DANPOS (Chen et al. 2013), and compared their performance against our original 

algorithm. Due to a lack of validated reference data sets it is not possible to calculate 

false positive or negative rates, instead, the robustness of region calling between sub-

sampled SE and PE data, and the performance of border detection were tested. 

Following peak calling, maps were converted to a binary representation of nucleosome 

regions (scored 1 inside peak regions, 0 outside), and sub-sampled maps correlated as

described previously. As the original pipeline does not call peak borders a window of 

100 bp was set around each peak summit location. Under these criteria MACS2 is 

found to produce the most robust region calls, followed by iNPS, with the original 

pipeline performing very poorly. Conversely, when region sizes are considered MACS2 

performs very poorly, with peak widths well beyond the expected nucleosome width 

(638.3 ± 7.3 bp). Given the ~40-60 bp read extension and ~100 bp resolution of 

nucleosome mapping, peak widths are expected to be within the ~50-150 bp range, 

which matches the distribution observed for iNPS (114.7 ± 0.4 bp).

Although iNPS out-performed other peak-callers on SE data, analysis failed on PE 

data, and it is not possible to incorporate replicate data sets. I therefore adapted the 

core peak identification approach taken by the Han group, but with significant 

alterations to pre- and post-processing steps, for rapid and flexible application to SE 

and PE MNase-seq data. To utilise replicate data I identified canonical nucleosomes 

positions across all WT samples before analysing individual samples for local 

variations. An averaged reference nucleosome map was produced from all WT 

replicates before applying a Gaussian kernel smoothing function to both averaged and 

individual nucleosome maps. The first derivitive of the Gaussian (FDoG) and Laplacian 
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of Gaussian (LoG) convolutions of these smoothed profiles were then calculated. 

Inflexions in the FDoG represent extremum points (peaks and troughs), while LoG 

inflexions indicate peak boundaries (Fig4.5A). Average nucleosome peaks can then be 

identified as regions fitting the expected peak shape profile. A simple empirical filtering 

threshold (< 2x or > 50x mean bin score) was then applied to remove regions at the 

extremes of signal strength. An example of the intermediate steps in this process and 

final called peak regions is shown in Fig4.5D. Canonical nucleosome positions are first 

identified in the averaged nucleosome map before searching within these canonical 

regions for shifted nucleosomes within individual maps. This use of canonical 

nucleosome positions improves the robustness of peak calling and allows direct 

comparison of matched nucleosome positions across conditions. 

To validate the performance of our optimised peak calling algorithm, its performance 

was measured as detailed above. This approach provides a huge improvement in 

robustness over the original pipeline, and even out-performs iNPS from which the core 

concept was derived (Fig4.5B). We also observe a tighter distribution of peak widths, 

closely matching the expected region size (Fig4.5C). Manual inspection of resultant 

nucleosome regions additionally suggests congruity with visually identifiable peaks, 

and equally high performance on broader and overlapping peaks (Fig4.5D). This 

improved methodology was applied to all WT and remodeler mutants to provide a high 

confidence set of nucleosome positions for more quantitative analysis of chromatin 

properties. 
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Fig4.5: Optimising Nucleosome Detection. 

A) Diagrams of the peak calling strategies used in the original and optimised pipelines. 

B) Spearman's correlation values for regions determined by respective peak-callers from 

sub-sampled WT data. 

C) Density plot of region widths for regions called from sub-sampled data using respective 

peak-callers.

D) Example gene with WT rep1 nucleosome signals and intermediate convolution steps 

involved in peak calling (FDoG = First Deriviative of Gaussian; LoG = Laplacian of 

Gaussian). Highlighted regions in grey indicate identified nucleosome regions. 
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4.6  Quantifying WT Nucleosome Parameters

Given the high-confidence nucleosome dyad and boundary locations and robust 

nucleosome maps produced through the improved pipeline outlined above it is now 

possible to sensitively measure individual properties of chromatin structure at the 

nucleosome level. We define four main nucleosome parameters of interest for the 

study of chromatin remodeler functions as summarised in Fig4.6A:

• Positioning is simply the change in average dyad position (peak summit) 

between each nucleosome position and the canonical WT position. 

• Occupancy indicates the proportion cells in the population that possess a 

nucleosome bound at a given locus. Occupancy is thought to be influenced by 

processes including nucleosome turnover, eviction and accessibility. Occupancy

is measured as the sum of nucleosome scores within peak boundaries. 

• Distribution relates to the uniformity of positioning of nucleosomes across the 

population of cells, with broader regions indicating less stringent maintenance 

of a nucleosome position. To measure distribution, nucleosome score values 

are cumulatively summed across the peak region and a cumulative probability 

distribution produced. The gradient of the central dyad region (dyad position ± 2

bins) is measured, with broader distributions causing a reduced gradient, and 

tighter distributions a sharper gradient. Notably both occupancy and distribution 

will affect peak heights in averaged chromatin profiles but represent very 

different underlying mechanisms. 

• Nucleosome size is the footprint size of digest-protected fragments, measured 

as the average of fragment sizes for all reads contributing to the nucleosome 

score of a region. Nucleosome size has been previously under-studied due to 

the prevalence of short SE sequencing but may provide insight into nucleosome

stability or alternative nucleosome structures.   

After designing an algorithm to measure positioning, occupancy, distribution and size 

for all nucleosomes across the the genome I first applied it to the seven WT growth 

stage samples to characterise Dictyostelium nucleosome properties. While inter-

experiment variations are observed, as noted previously, matched replicates are 

extremely closely matched - demonstrating the accuracy of the quantification pipeline. 

One exception to this is WT rep5 – which was subjected to fewer cycles during 

sequencing and shows a significantly decreased fragment size compared with other 
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ExpC replicates (e.g. -5.4 bp vs. WT rep6, t = -162.65, p < 2.2 x 10-16), it is therefore 

excluded from further analyses. Positioning of nucleosomes in Dictyostelium appears 

to be relatively dynamic, displaying a mean 8.6 bp (± 0.02 bp) shift compared to 

canonical nucleosome positions, however despite optimisation of peak calling we 

cannot rule out remaining inaccuracies. Interestingly nucleosome distribution 

parameters display a bi-modal distribution suggesting distinct sub-populations of tighter

and broader peaks – representing more strictly and leniently regulated nucleosome 

positions respectively. Despite digestion-biases in nucleosome sizes between 

experiments, the mean footprint size of 145.5 bp closely matches  the canonical 

nucleosome footprint of 147 bp. The average nucleosome parameters across WT 

replicates are summarised in Table4.2.

Sample Position (bp)  Occupancy  Distribution Size (bp)

WT rep1 7.68 ± 0.02 145 ± 0.25 6.70 ± 0.005 146.4 ± 0.01

WT rep2 7.45 ± 0.02 141 ± 0.25 6.70 ± 0.005 146.3 ± 0.01

WT rep3 7.61 ± 0.02 131 ± 0.18 6.35 ± 0.005 150.3 ± 0.01

WT rep4 7.85 ± 0.02 132 ± 0.18 6.37 ± 0.005 150.4 ± 0.02

WT rep5 10.08 ± 0.03 162 ± 0.33 6.95 ± 0.006 138.4 ± 0.02

WT rep6 9.91 ± 0.03 147 ± 0.30 6.77 ± 0.005 141.4 ± 0.02

WT rep7 10.14 ± 0.03 150 ± 0.30 6.83 ± 0.006 141.2 ± 0.02

Table4.2: Dictyostelium Nucleosome Parameters. Mean nucleosome parameters (± 

standard error) measured across WT growth stage replicates for all canonical nucleosome 

positions (n = 164,549). 
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Fig4.6: Dictyostelium Nucleosome Parameter Characterisation.

A) Diagrammatic representation of the four nucleosome parameters measured.  

B) Density plots of the four nucleosome parameters quantified for all canonical nucleosome

positions (n=164,549) across all seven WT replicates.
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4.7  Nucleosome Parameter Changes in Remodeler Mutants

The development of accurate quantification tools allows us to determine the global 

influence of remodeler loss on specific chromatin properties. Positioning shifts, 

occupancy, distribution and nucleosome size were measured in ChdA, ChdB, ChdC 

and Isw null mutants and compared globally against matched WT parameters (Fig4.7). 

Interestingly the majority of parameters are not globally perturbed upon remodeler loss,

with all remodeler mutants displaying negligible effect sizes for distribution and 

occupancy changes (i.e. Cohen's d < 0.2). ChdC and Isw cause a small increase in the

absolute positioning shift (d = 0.31 and d = 0.15 respectively). However the most 

prominent effects are surprisingly observed for nucleosome size, with ChdA causing a 

large decrease in average footprint size (-6.64 ± 0.2 bp, d = -1.17), and ChdC causing 

a moderate increase (5.67 ± 0.2 bp, d = 0.54). 

The ability to capture the known spacing changes in ChdC provide a validation of the 

developed pipeline. The average shift of 5.5 ± 0.2 bp relative to WT nucleosome 

positions closely matches the spacing increase observed at TSS profiles, and 

measured previously (Platt 2013). Notably this positioning change also closely matches

the measured change in nucleosome size, raising the possibility that ChdC in fact 

influences nucleosome structure, with previously reported spacing effects a result of 

this mechanism. 

While ChdA and ChdB null mutants do not display large global shifts in occupancy, they

do cause slight yet significant reciprocal changes (9.04 ± 0.2 and -9.15 ± 0.2 

respectively). This is in keeping with their genic occupancy effects observed at TSS 

average profiles having a dominant effect on the global average due to a 

preponderance of canonical nucleosomes positions falling within gene bodies (genic = 

131,765, intergenic = 27,023). While this is suggestive of genic occupancy 

maintenance being the primary role of ChdA and ChdB it is necessary to examine the 

localisation of changes with regards to gene bodies. 

Greater overall variability is observed for samples from Ion Torrent sequencing, 

possibly due to reduced read depth. Nonetheless,  Isw samples display a slight 

increase in positioning changes over matched WT samples (3.2 ± 0.1 bp). A minor 

reduction (d = -0.05) in distribution and increase in nucleosome size (d = 0.1) is also 

observed. Therefore the loss of average nucleosome structure observed within gene 

bodies upon Isw loss appears to represents a combination of minor changes to 
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nucleosome positioning, organisation across the population, and nucleosome structure 

or accessibility. 

Fig4.7: Remodeler Loss Uniquely Influences Chromatin Properties.  

Density plots of the distribution of global nucleosome parameters measured  for all 

canonical nucleosomes (n = 164,549) in all chromatin remodeler null mutants and matched 

WT samples. Cohen's d values of effect size for the mean change in each condition are 

indicated.  
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4.8  Visualising the Localisation of Chromatin Defects

Having established the global chromatin changes induced by loss of individual spacing 

remodelers I next aimed to establish the localisation of these changes relative to genic 

features. The commonly used TSS or TTS average profiles allow a qualitative 

visualisation of gross chromatin changes but their interpretation is limited by the myriad

factors contributing to the observed average structure. These convoluted factors 

include the distinct parameters at individual genes discussed above (positioning, 

occupancy, distribution and size), but also effects of averaging across genes. For 

example a change in NRL or a conservation of phasing but a shift relative to the TSS 

would both decrease the structure of the global profile. 

I therefore established a novel visualisation method to correct for positioning 

differences, and visualise nucleosome structure and parameters at defined 

nucleosome positions. Nucleosome score distribution is averaged around individual 

nucleosome dyad locations rather than relative to genomic features. This allows an un-

biased visualisation of occupancy and distribution changes. To provide localisation 

information we take the approach of using defined reference nucleosome positions 

relative to gene boundaries, similar to the designation around canonical TSS profiles (-

1, +1, +2, etc.) to categorise individual nucleosomes. These standard categories are 

extended to terminal nucleosomes (TN-1, TN, TN+1, etc.), and region averages (genic,

upstream and downstream) to allow simultaneous visualisation of the entire gene 

structure. The mean change in positioning, occupancy, distribution and size parameters

within each nucleosome category is also quantified to identify significant changes at 

individual positions. Gene profiles were plotted for all spacing remodeler mutants 

relative to matched WT replicates (Fig4.8). 

Examination of the positioning values observed at specific nucleosome categories in 

ChdC- reveals the expected ~5 bp shift away from the TSS at +2 and +3 positions and 

not at the +1. This recapitulates previously reported trends in ChdC mutants and 

provides validates the performance of the analysis pipeline. In addition to this known 

chromatin defect, a number of chromatin changes are observed that were not possible 

to detect from the original global averaging of genes. A positioning shift away from the 

downstream NFR and into the gene body is also seen upstream of the TN, although of 

reduced magnitude (~ -2bp) compared with the TSS. Occupancy is signficantly 

increased at -1/TN+1 positions, and decreased in the gene body. The fact that 
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localisation of size changes does not match that of positioning changes suggests that 

the altered nucleosome spacing of ChdC mutants is not a result of H1 histone 

incorporation or altered nucleosomes structure. 

The profile of ChdA- parameters confirms that occupancy is increased throughout the 

gene body, excluding the +1 nucleosome, and decreased only at the -1/TN+1 positions.

Additionally, a negative positioning shift specific to the TN of ~ -4 bp is observed, 

indicating a shift of the TN further into the gene body. Strikingly the occupancy and 

positioning changes observed in ChdB- are almost exactly the inverse of ChdA- - with 

reduced genic occupancy, increased -1/TN+1 occupancy and a positive positioning 

shift away from the gene body specific to the TN. This suggests that the two CHD 

proteins may play antagonistic roles in regulating genic occupancy and positioning of 

the TN, however the distribution and size changes of ChdA and ChdB are distinct, 

suggesting further independent roles. In ChdA- nucleosome distribution is consistently 

increased across all regions indicating that contrary to expectations loss of this spacing

remodeler leads to stricter maintenance of nucleosome positions across the population 

of cells, while ChdB does not influence distribution. Finally ChdA- and ChdB- do cause 

reciprocal effects on nucleosome footprint size, however while in ChdA- the reduced 

nucleosome size appears universal, ChdB loss causes increased nucleosome size only

in intergenic regions. 

The high variability observed in Isw makes detailed parameter analysis more difficult, 

however reproducible negative positioning shifts, decreased occupancy and decreased

distribution is observed at the +1 to +3 positions, consistent with moderate disruption of

multiple nucleosome parameters causing the observed loss of average chromatin 

structure.
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Fig4.8: Chromatin Changes are Localised to Sub-Genic Locations. 

Upper panels: average nucleosome score distribution ± 50 bp of each nucleosome dyad 

position for all genes (n=12,964) grouped by nucleosome category (line = mean, shaded 

area = 95% confidence interval, UP, GEN and DO = average of upstream, genic and 

downstream nucleosomes repsectively, TN = terminal nucleosome). 

Lower panels: average parameter change for all nucleosomes grouped by nucleosome 

category (circle = mean, intervals = standard error of the difference (SED)). 
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4.9 Summary

Current understanding of the distinct roles played by individual spacing remodelers is 

limited by the global genome averaging of nucleosome scores to detect chromatin 

defects. Here I have developed and validated novel bioinformatic methods to quantify 

distinct nucleosome parameters and explore the localisation of these parameter 

changes in remodeler mutants. MNase-sequencing of Isw- and bioinformatic analysis of

Isw-, ChdA-, ChdB- and ChdC- has allowed detailed characterisation of the chromatin 

defects caused by loss of each individual spacing remodeler in Dictyostelium. 

Notably, all remodeler mutants cause unique and complex nucleosome parameters 

changes across the genome, demonstrating that non-redundant roles the ISWI and 

CHD families. ChdA and ChdB have reciprocal effects on the relative nucleosome 

occupancy levels within genes. The previously reported role of ChdC in reducing linker 

lengths of nucleosomes downstream of the +1 position was re-confirmed and a novel 

effect on nucleosome footprint size detected. Isw has minor, non-uniform effects on 

nucleosome occupancy, positioning and distribution, and is required to maintain 

organised nucleosomal arrays. 
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Chapter 5:

Exploring the Relationship between

Chromatin Structure and Transcriptional

Regulation 
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5.1  Introduction

Having determined the individual roles of the four spacing remodelers (ChdA, ChdB, 

ChdC and Isw) in establishing and maintaining chromatin structure, I next aimed to 

examine the importance of this remodeling in the maintenance of gene expression, and

how mis-regulation upon remodeler knockout leads to observed phenotypic effects. 

Transcriptome-sequencing (RNA-seq) was previously conducted for WT and CHD 

mutants in vegetative cells (Plattt et al. 2013). Enrichment of chromatin defects was 

observed in genes mis-expressed upon ChdC loss, however the majority of mis-

expressed genes did not display significant chromatin changes (Platt et al. 2013). The 

detailed nucleosome profiles of ChdA-, ChdB- and Isw- presented in the current study 

provide the opportunity to conduct a more in-depth characterisation of the relationship 

between nucleosome remodeling and transcriptional effects. Furthermore, cross-

comparison between remodeler mutants allows examination of how remodelers interact

to maintain in vivo chromatin structure and expression programs. 

I first profiled transcriptional changes induced by loss of the remaining unstudied 

spacing remodeler – Isw, before conducting a detailed comparison of all CHD and ISWI

mutant transcriptomes. Expression profiles were then compared with nucleosome 

parameter profiles, and the overlap between transcriptonally mis-regulated and 

structurally mis-modeled gene sets examined. Finally, I examined how spacing 

remodelers interact to maintain cell-type specific transcriptional programs. 
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5.2  The Gene Expression Profile of Isw Null Mutants

To establish the impact of Isw loss on the transcriptional landscape of vegetative 

Dictyostelium, I performed triplicate mRNA-sequencing of WT and Isw- cell lines grown 

in shaking culture. Relative expression levels are highly reproducible between 

replicates indicating high data quality (Fig5.1A). Differential expression analysis reveals

significant (p < 0.05) mis-expression of over 50% of analysed genes (Fig5.1B). A large 

number of genes are either up- or down-regulated (n = 3210 and n = 2997 respectively)

upon Isw loss, with a slight bias towards de-repression. Furthermore, when only 

strongly altered genes are examined (p < 0.05 and > 2 fold change (FC)) the bias 

towards de-repression is amplified (n=901 up-regulated, n=728 down-regulated). 

Gene-ontology analysis indicates that despite this wide-spread transcriptional mis-

regulation, there is little bias for specific pathways or processes (Fig5.1C). This lack of 

functional enrichment is also analogous to previous findings from ChdA and ChdB KO 

mutants, which also exhibit little ontology bias (Platt et al. 2013). Whereas ChdC- 

mutants displayed transcriptional disruption of metabolic pathways and a strong growth

inhibition, ChdA, ChdB and Isw mutants which display little ontology bias also display 

no growth phenotype, possibly suggesting a more targeted regulatory role for ChdC. 

Closer examination of the most strongly mis-regulated genes identifies genes involved 

in a range of processes including vesicle trafficking and secretion (lmcA, rabR; 

Bakthavatsalam & Gomer 2010), development (cotD, cotA, hbx7; Takemoto et al. 

1990), and actin cytoskeleton dynamics (wipA; Myers et al. 2006) (Fig5.2A). Mis-

regulation of any of these pathways could explain the enhanced migration speeds of 

Isw- cells. The strong down-regulation of wipA, which regulates F-actin polymerization 

(Myers et al. 2006), may alone be enough to influence chemotaxis speeds. The strong 

down-regulation of srsA, a protein strongly induced immediately following starvation, 

loss of which delays aggregation (Sasaki et al., 2008), may explain the observed 

developmental delay. A more striking pattern however is the abundance of 

transposable elements (TE) and lowly transcribed genes that are strongly up-regulated 

in Isw null cells. Within the subset of strongly mis-regulated genes (p < 0.05 and > 2 

FC), TE elements are highly over-enriched, and disproportionately up-regulated (p = 

3.9 x 10-17 for both comparisons, hypergeometric distribution; Fig5.2B); revealing an 

important role for Isw In TE repression. 

To establish whether this de-repression is specific for TE or potentially represents a 
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global role for Isw in transcriptional repression, I identified all genes that were up- and 

down-regulated upon Isw loss, and examined their expression levels under WT 

conditions (Fig5.2C). A strong divide is observed, with genes that are repressed in Isw- 

cells exhibiting high expression in WT cells, and over-expressed genes in Isw- 

exhibiting significantly lower expression in WT (p < 1 x 10-15). Hence Isw loss appears 

to have repressive effects at highly expressed genes, and an activating effect on 

repressed genes.

Fig5.1: Isw Loss Results in Wide-spread Transcriptional Disruption. 

A) Correlation of rlog normalised read-counts between biological replicates for all analysed 

genes (n = 11,829, linear regression fit and Spearman's r are indicated). B) MA plot of 

moderated log2 fold change in expression (Isw- vs. WT) against mean expression level for 

all analysed genes (n=11,829). Red points indicate significantly differentially expressed 

genes (p < 0.05), the total number of significantly up- and down-regulated genes are 

annotated in red.  C) Barplots of -log10 p-values for significantly over- and under- enriched 

gene ontology categories within the differentially expressed gene set (Isw- vs. WT).
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Fig5.2: Isw is Required for Maintenance of Gene Repression. 

Log2 fold expression changes (isw vs WT) are plotted for: A) the 50 most  strongly up- and 

down-regulated genes (genes with anotated gene products are labeled, stars indicate TE 

genes), and B) All TE genes mis-regulated in Isw-. Bars are coloured by WT expression 

level of respective genes (red=highly expressed, blue = lowly expressed, white=average 

expression level for all genes). C) Boxplot indicating the distribution of WT expression 

levels for all significantly up- (n=3,210) and down- (n=2,997) regulated genes (Isw- vs, WT; 

*** = p < 0.001).  
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5.3  Comparing the Transcriptional Effects of Remodelers

I next explored the relationship between the transcription profiles of each remodeler 

mutant; to allow direct comparison of the four spacing remodeler mutants, previously 

generated RNAseq data from ChdA-, ChdB- and ChdC- cell lines (Platt et al. 2013) were

re-analysed using the same pipeline used for Isw- analysis. The number of strongly 

differentially expressed (p < 0.05 and > 2 FC) genes identified for the CHD family 

mutants closely matches those observed previously (Fig5.3A), providing validation of 

our findings. As noted previously for Isw, the number of strongly up-regulated genes is 

consistently higher than those down-regulated across all remodelers. The average 

repression of highly-expressed genes, and de-repression of lowly-expressed genes is 

also apparent for all four mutants. Interestingly the overall degree of mis-regulation 

roughly reflects the degree of phenotypic severity (ChdC > ChdA > Isw > ChdB), which 

is further supported by examination of the sample-to-sample distances (Fig5.3B). 

To examine the relationships between transcriptional profiles I performed principle 

components analysis on the most variable genes across all conditions (Fig5.3C). Two 

components explain over 50% of the variance and distinguish distinct transcriptional 

responses to remodeler loss. The strongest transcriptional effect is observed in ChdC-, 

which is clearly separated from all other conditions. The second component identifies a

lesser, divergent transcriptional phenotype separating ChdA and ChdB from Isw. To 

examine the genes contributing to these distinct transcriptional effects, the top 20 most 

heavily weighted were plotted (Fig5.3D) and gene ontology analysis conducted on the 

top 200 heavily weighted genes. Genes heavily mis-regulated by ChdC in this gene set

are also frequently mis-regulated in all other spacing remodelers and enriched for 

metabolic ontologies (e.g. carbohydrate derivative metabolic process, p < 1 x 10-4), 

suggesting a common transcriptional response of metabolic pathways to remodeler 

loss, albeit to differing degrees. The genes divergently expressed in ChdA/ChdB and 

Isw on the other hand appear more varied but include ontologies related to signaling 

(e.g. receptor activity, p = 0.02 and signal transduction, p = 0.003) and, notably, 

phototaxis (p = 0.03) which is known to be defective in ChdA mutants (Platt et al. 

2013). We conclude that ChdC- displays the strongest transcriptional disruption among 

remodeler mutants, affecting primarily metabolic processes in vegetative cells. ChdA, 

ChdB and Isw have more modest transcriptional effects, influencing a range of cellular 

processes.
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Fig5.3: Comparison of Transcriptional Disruption between Remodeler Mutants. 

A) Comparisons of rlog normalised gene counts between each remodeler mutant and WT 

cells (n=11,829, red=differentially expressed (DE; p < 0.05), blue=DE by over two-fold). B) 

Euclidean distances matrix of rlog transformed counts. C) Principle components analysis 

(PCA) of RNAseq profiles, the first two PCs are plotted. D) Expression change of the 20 

most heavily weighted genes from PC1 and PC2 (grey=non-DE).    
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5.4  Impact of Remodeler Loss is Dependent on Transcription Level

As noted above, examination of the global transcriptome profiles of the four remodeler 

mutants (Fig5.3A) suggests that highly- and lowly-expressed genes are differentially 

affected by remodeler loss; similar to what was observed for Isw- (Fig5.2C). To test this,

the gene sets strongly up- and down-regulated (p < 0.05 and > 2 FC) in remodeler 

mutants were identified, and the WT expression level of each gene set plotted 

(Fig5.4A). As a control, publicly available RNA-seq data from an un-related ABC 

transporter null mutant was also analysed using the same parameters (Miranda et al. 

2013). While all gene sets mis-regulated by chromatin remodeler loss display a 

significant difference in their WT expression levels (p < 1x10-15 for all conditions), genes

mis-regulated by loss of AbcA10 show no bias in their physiological expression levels 

(p = 0.056). This indicates that loss of any individual remodeler results in a repression 

of highly-expressed genes, and a de-repression of lowly-expressed genes. 

This raises the question of whether repression of TE is specific to Isw, or is a more 

general repressive effect across remodelers. The number of strongly up-regulated TE 

was counted for each remodeler mutant and plotted alongside the number expected by

chance based on the total number of strongly up-regulated genes in each condition 

(Fig5.4B). Only Isw- exhibits a significant enrichment of TE in the strongly up-regulated 

gene set (p < 1 x 10-17, upper-tailed hypergeometric distribution), strikingly TE are 

positively protected from mis-regulation in ChdA and ChdC (p = 0.01 and p < 1 x 10-5, 

lower-tailed hypergeometric distribution). Thus while spacing remodelers share a 

common, repressive effect on many lowly-transcribed genes, the role of Isw in 

repression of TE is unique. 

I next asked whether nucleosome parameters also display a bivalent effect in lowly- 

and highly-transcribed genes. All genes were divided into quartiles based on their 

expression level in WT vegetative cells, and average nucleosome profiles plotted 

(Fig5.4C). In all four remodeler mutants, chromatin defects are enriched in highly 

expressed genes. However, the nature of parameters changes is specific to each 

mutant, matching the global changes observed previously.  
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Fig5.4: The Differential Effects of Remodeler Loss on Highly- and Lowly-Expressed 

Genes. 

A) WT expression levels of gene sets up- and down-regulated in mutant conditions (*** = p 

< 0.001, Mann-Whitney U). 

B) Number of transposable elements (TE) strongly up-regulated (p < 0.05 and > two fold 

change) across each remodeler mutant, compared to the number expected by chance (*** 

= p < 0.001, upper tailed hypergeometric distribution). 

C) Meta-nucleosome profiles for the 1st and 4th quartiles of genes divided by WT expression

levels (UP, GEN and DO = averages of upstream, genic and downstream nucleosomes 

respectively).    
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5.5  Comparison of Gene Sets Mis-Regulated in Remodeler Mutants

The effects on highly- and lowly-expressed genes across CHD and ISWI mutants 

suggests a common transcriptional response to spacing remodeler loss. I therefore 

examined the degree of overlap for up- and down-regulated gene sets between the 

four mutants. Technical limitations prevent the detection of differential expression for 

genes with very low transcript levels, therefore to avoid overestimating the significance 

of the intersect between mis-regulated gene sets, the gene population used for 

statistical testing was restricted to genes with WT expression levels greater than or 

equal to that of the lowest mis-expressed gene (n = 10,909). In total, ~85% of genes (n 

= 9343) are mis-regulated in one or more remodeler mutants, with 35% of genes (n = 

3863) displaying a greater than two-fold change in abundance. Thus spacing 

remodelers in combination influence the expression of the majority of the Dictyostelium 

genome. A highly significant association is observed for de-repressed gene sets 

between all remodeler mutants (p < 1x10-20,  hypergeomtric distribution with Benjamini-

Hochberg correction); and the same is true for all repressed gene sets (p < 1x10-20). 

Conversely no significant intersect is observed in any up-regulated vs. down-regulated 

gene set comparisons.

The genes commonly regulated by all spacing remodelers (n = 182) were more closely 

examined (Fig5.5B). Comparison with WT expression levels show that commonly mis-

regulated genes tend to be either highly expressed or highly repressed in WT 

conditions. As expected, the expression change in mutants largely negatively 

corresponds to the WT expression level (i.e. highly expressed genes tend to be down-

regulated and lowly-expressed up-regulated). Thus many genes have a common 

transcriptional response to chromatin disruption, which is heavily dependent upon a 

genes initial expression level. Furthermore, expression changes in the mutants 

correlate with physiological expression changes in development (0h vs. 10h 

development). Hence CHD and ISWI remodelers are all required to suppress 

developmental expression changes, and maintain the growth stage transcription 

program. 
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Fig5.5: Chromatin Remodelers Regulate a Common Subset of Genes. 

A) Overlapping gene sets for all strongly up- and down-regulated genes between all 

remodeler mutant conditions, circle sizes are scaled to the number of mis-regulated genes 

per set, the widths of arc lines connecting pairs of gene sets represent the degree of 

overlap (top) and the -log10 P-value of the hypergeometric distribution test for the 

significance of the overlap (bottom). Arc-lines indicating significance are coloured red if 

significant and grey if non-significant. 

B) Heatmap of the 182 genes strongly mis-regulated in all four remodeler mutant 

conditions. Lane 1 indicates the WT expression level, lanes 2-5 indicate the log2 fold 

change in expression level between remodeler mutants and WT (0h of development), and 

lane 6 indicates the log2 fold change in expression between WT cells developed for 10h 

post-nutrient depletion on filters vs. vegetative WT cells (WT 0h). The colour scale for 

expresion change is centered around zero, while the colour scale for WT expression level 

is centered around the median expression level for all genes. Stars to the left of lane1 

indicate genes also identified as strongly weighted in the previously conducted PCA 

analysis.
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5.6  Identifying Severely Mis-Modeled Genes

To determine whether transcriptional changes are associated with specific nucleosome 

parameter changes, genes displaying severely altered average positioning, occupancy,

distribution or size properties were identified in each mutant. The average nucleosome 

parameters for each gene were compared to an empirical null distribution determined 

from Monte-Carlo resampling of all nucleosomes, and genes with an adjusted p-value 

less than 0.05 are defined as mis-modeled. While the numbers of significantly altered 

genes from each parameter category largely follow the trends expected from global 

chromatin profiles (Table5.1), an unexpected, bi-directional effect of ChdB loss on the 

occupancy of distinct gene sets is revealed, likely masking the strength of occupancy 

changes observed in averaged profiles. 

To validate the performance of this approach in identifying mis-modeled genes, the 

average TSS profiles of individual mis-modeled gene sets were plotted (Fig5.6). As 

TSS profiles are independent of all nucleosome calling and parameter quantification 

steps, this also provides a validation of the parameter quantification pipeline. All mis-

modeled gene sets are strongly enriched for the specified parameter changes, however

the remaining population of genes do still retain the global nucleosome defects 

characteristic of each mutant. Notably, the number of genes with significant altered 

nucleosome positioning in ChdC- is approximately a third of the number of mis-modeled

genes previously reported (578 vs. 1685; Platt et al. 2013). Nonetheless the isolated 

mis-modeled subset shown here displays a highly similar TSS profile to those 

previously identified (Platt et al. 2013), hence this change is likely a result of both 

increased specificity in nucleosome parameters and increased stringency. 

Position Occupancy Distribution Size

Increase Decrease Increase Decrease Increase Decrease

ChdA 221 306 186 230 179 243 5753

ChdB 291 1549 1547 150 234 769 340

ChdC 806 725 307 152 344 2069 150

Isw 381 150 957 171 227 537 471

Table5.1. Severely Mis-Modeled Gene Sets. Summary of the number of  mis-modeled 

genes in each parameter category for all four spacing remodeler mutants. 
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Fig5.6: Chromatin Profiles of Mis-Modeled Gene Sets. 

Nucleosome scores within ±1000 bp of the gene start site were summed and normalised to 

total tag count for genes identified as severely mis-modeled in each condition (upper 

panels), and remaining, non-significantly altered genes (lower panels).

90



5.7  Association between Transcriptional and Structural Defects

Previous studies of chromatin remodelers, including that of ChdC from our own lab, 

have found that while genes displaying gross nucleosome changes are significantly 

associated with transcriptional disruption, the majority of mis-modeled genes are not 

mis-expressed. However as demonstrated by the current study, these gross 

nucleosome profile changes represent compound parameter changes. By examining 

the individual associations between parameter categories and transcriptional outcomes

I aimed to discern the more causative structural changes from indirect or confounding 

effects. To this end, the intersects of all sets of genes identified as mis-modeled for any 

individual nucleosome parameter, or strongly mis-expressed were visualised (Fig5.7).  

Overall, limited association is found between mis-expressed and mis-modeled gene 

sets, in keeping with previous observations. Indeed in the case of Isw- no significant 

association is observed with any individual structural defect. This potentially indicates 

that the transcriptional effect of Isw is an emergent property of multiple parameter 

changes and is not associated with any individual property of nucleosomal arrays. CHD

mutants on the other hand display significant associations with specific nucleosome 

parameter changes. Genes up-regulated in ChdA- are associated with decreased 

footprint size (p = 0.035), and up-regulated genes in ChdB- are strongly associated with

increased nucleosome occupancy (p = 6 x 10-13). The link between nucleosome 

positioning and/or occupancy changes in ChdC mutants and transcriptional changes 

that was previously reported (Platt et al. 2013) is re-confirmed. However, we are 

additionally able to de-convolute these effects – observing that re-positioning is 

primarily linked to de-repression, while occupancy decreases are associated with 

aberrant gene repression. 

Surprisingly a consistent parameter-association occurs between occupancy and 

nucleosome footprint size across all mutants, with increased nucleosome size 

occurring alongside increased occupancy, and decreased size with decreased 

occupancy. This effect may be caused by the stability or structure of the nucleosomes, 

with more accessible nucleosomes more liable to over-digestion, which in the example 

of fragile nucleosomes, has been shown to lead to apparent occupancy losses (Xi et al.

2011).
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Fig5.7: Transcriptional Mis-regulation is Asscoiated with Specific Chromatin 

Changes. Representation of the overlap between strongly transcriptionally mis-regulated 

genes (>2 fold change and p < 0.05) and severely mis-modeled genes for each remodeler 

mutant. Each circle represents the gene set for one parameter change and one direction of 

mis-regulation as indicated by the key (with the exception of positioning changes which are 

absolute). Circle size indicates gene number, the width of arcs plotted above each pair of 

circles represent the relative degree of overlap, and the width of arcs below represent the 

-log10 adjusted p-value of the association; signficant associations (p < 0.05) are coloured 

red while non-significant are grey (hypergeometric distribution test). 
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5.8  Antagonistic Occupancy Effects of ChdA and ChdB

The finding that ChdB loss results in both increased and decreased genic nucleosome 

occupancy at distinct gene subsets raises the possibility that despite global average 

nucleosome profile differences, ChdA and ChdB could perform a common remodelling 

function on a subset of genes. To explore potential interaction between the two closely 

related CHD proteins, I first examined the nucleosome profiles of identified subsets of 

genes with significantly increased and decreased occupancy changes (Fig5.8A). 

Occupancy increased genes in ChdB- display a comparable magnitude of occupancy 

increase to those observed in ChdA, but additionally display an increased intergenic 

occupancy not seen upon ChdA loss. Intergenic occupancy changes are also not observed 

in the decreased occupancy subset, suggesting differences in the targeting or retention 

mechanisms between subsets and remodeler complexes. 

To examine whether gene sets displaying differential occupancy effects in ChdB- are also 

mis-modeled in ChdA-, the average occupancy change of genes within each subset was 

calculated for both mutants (Fig5.8B). Surprisingly, occupancy values display a striking 

inverse relationship between mutants, with genes identified as exhibiting significantly 

increased occupancy in ChdB- predominantly displaying reduced occupancy in ChdA-. 

Occupancy scores of genes within this subset do display a modest negative correlated (r = 

-0.28, p < 1 x 10-15), however globally no correlation is observed (r = -0.02, p = 0.05). Thus 

ChdA and ChdB appear to perform antagonistic remodeling activities at a subset of genes 

to maintain nucleosome occupancy.

This raises the question of whether differential remodelling effects at these subsets relate to

transcriptional changes. Strikingly, a significant difference in WT expression levels is 

observed between these two subsets (p < 1 x 10-16, Mann-Whitney U; Fig5.8C). In keeping 

with the globally averaged effects, the two subsets also display bivalent expression 

changes in ChdA and ChdB mutants compared to WT (Fig5.8D; p = 4 x 10-9 and p < 1 x 10-

16 respectively, Mann-Whitney U). Hence highly expressed genes display increased 

nucleosome occupancy in the absence of ChdA and decreased nucleosome occupancy in 

ChdB-. Furthermore these findings explain the association observed between de-repressed 

genes and occupancy increase in ChdB- (Fig5.7). Finally, a moderate correlation in 

expression change is noted between mutants within these subsets (Fig5.8E; OI: r = 0.45, p 

< 1 x 10-15; OD: r = 0.62, p < 1x10-15). This suggests that ChdA and ChdB have antagonistic 

activities on relative nucleosome levels, but a common effect on transcription. 
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Fig5.8: Antagonistic Occupancy Effects in ChdA- and ChdB- mutants.

A) Nucleosome profiles of occupancy increased/decreased (OI/OD) gene sets from ChdA 

and ChdB mutants. B) Average occupancy changes for genes from the ChdB occupancy 

change subsets. Left panel indicates genes identified as significantly altered. C) WT 

expression levels of genes from the two subsets (ChdB- OI and ChdB- OD; *** = p < 0.001, 

Mann-Whitney U test). D) Expression change values of the two subsets in ChdA and ChdB 

(log2 fold change vs. WT). E) Scatter plot of expression change values between mutants 

within each gene subset, regression line and Pearson's correlation coefficient. 
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5.9  ChdA-/ChdB- Double Knockout Mutant

The observations of antagonistic occupancy effects but correlated expression changes 

in ChdA and ChdB further build on the global trends of distinct nucleosome parameter 

effects but common transcriptional effects observed in all four remodeler mutants. This 

suggests that distinct and even antagonistic nucleosome restructuring is required to 

optimise expression in order to establish cell-type specific transcriptional programs. To 

test this concept I generated a ChdA-/ChdB- double knockout (DKO) cell line, and 

examined the phenotypic effects on growth, development, chromatin structure and 

transcription. If ChdA and ChdB do act antagonistically at the same gene sets, we 

would expect loss of both ChdA and ChdB to rescue the occupancy defect phenotypes 

observed in the single mutant cell lines. Furthermore, if this antagonism is indeed 

required to optimise chromatin states in order to allow both high-expression and 

repression of genes, we would expect the split transcriptional effects in single mutants 

to be amplified in the double mutant.  

5.9.1  Phenotypic Effects of Double Knockout on Growth and Development

Floxed resistance cassettes were used for the original remodeler mutants (Faix et al., 

2004), hence it was possible to generate a ChdA-/ChdB- DKO mutant cell line using the

original ChdB KO vector detailed previously (Platt et al. 2013) in a Cre-recombinase 

treated ChdA- background (Fig5.9A). Neither ChdA- nor ChdB- single mutants exhibited

significant inhibition of proliferation (Platt et al. 2013); to examine whether combined 

knockout produces epistatic effects, the growth rate of double and single mutants was 

measured in shaking culture. Average doubling time is significantly increased 

compared to both WT (+3.5 ± 2.3 hours, p = 0.002) and ChdB- (+3.5 ± 2.8 hours, p = 

0.01; 95% CI, one-way ANOVA with Tukey's post-test), but not to ChdA- (Fig5.9B). I 

next examined the effect of combined ChdA/ChdB knockout on development. Onset of 

aggregation in ChdA-/ChdB- cells is delayed by approximately two hours, comparable 

to the delay observed for ChdB- (Fig5.9C). Additionally, as observed for ChdB- 

previously (Platt et al. 2013) the streaming delay in ChdA-/ChdB- is propagated to loose

mound and tight aggregation stages also. Thus while the double mutant exhibits both 

reduced proliferation and delayed development, neither of these phenotypes appear 

significantly more severe than those displayed by single mutants. 
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Fig5.9: Effect of ChdA-/ChdB- Double Knockout on Growth and Development. 

A) PCR screening results for WT and double mutant: PCR primers amplifying the region 

targeted for excision in the mutant were used as a negative screen for mutants (see 

Fig3.2A negative KO primers for details). Cell line is indicated above gel lanes, primers are 

indicated below. B) Doubling times of single and double mutants measured in log phase 

growth in shaking culture. Significance of change in doubling time between individual 

conditions as measured by one-way ANOVA with Tukey's post-test is indicated in the matrix

above, * = P < 0.05, ** = P < 0.01. C) WT, single and double mutants were grown in nutrient

depleted conditions on KK2 agar and imaged over 24 hours. Developmental timing and 

gross morphological defects are observed by aligning frames by time-point post-starvation.
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5.9.2  Chromatin Profiling of ChdA-/ChdB- Double Knockout Cells

MNase-sequencing and nucleosome mapping of the ChdA-/ChdB- mutant cell line was 

conducted as detailed for Isw- (see section 4.2). Strikingly, almost no change is 

detected in the average nucleosome score profile at the transcription start site 

compared to WT (Fig5.10A). Nucleosome parameter analysis confirms that average 

occupancy is not effected at any nucleosome position (Fig5.10B). A slight negative shift

in the positioning of nucleosomes upstream of the TTS is observed (~ -1-2 bp), and a 

reduced distribution of genic nucleosomes suggesting less stringent regulation of genic

nucleosomes across the cell population. Therefore globally, combined loss of ChdA and

ChdB eliminates average occupancy changes observed in individual mutants, having 

only minor effects on the global chromatin landscape. 

5.9.3  Transcriptional Disruption in ChdA-/ChdB- Double Knockout Cells

I next examined the transcriptional effect of combined ChdA/ChdB KO. Triplicate RNA-

sequencing was conducted on WT and DKO mutant cell lines in growth stage cells. 

While a similar total number of genes are strongly mis-regulated in the combined 

mutant (1,175 up-regulated, 971 down-regulated) as individual mutants, the divergent 

effect on highly- and lowly- expressed genes is much more evident (Fig5.11A). 

Comparison of the gene sets strongly mis-regulated in each mutant reveals a large 

degree of overlap between all up-regulated and all down-regulated genes (Fig5.11B). 

Examining the structure of commonly mis-regulated gene sets indicates no clear 

enrichment of chromatin defects in mis-regulated genes (Fig5.11C). Thus despite 

performing antagonistic functions in regulating the primary chromatin structure, this 

data supports the notion that all spacing remodelers are required to maintain cell-type 

specific transcriptional programs.
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Fig5.10: ChdA-/ChdB- DKO Eliminates Global Occupancy Changes of Single Mutants.

A) TSS-aligned average nucleosome profile of ChdA-/ChdB- and WT Dictyostelium

for all annotated genes (n=12,964). 

B) Nucleosome parameter profile of ChdA-/ChdB- and WT Dictyostelium.

Upper panel: average nucleosome score distribution ± 50 bp of each nucleosome dyad 

position for all genes (n=12,964) grouped by nucleosome category (line = mean, shaded

area = 95% confidence interval, UP, GEN and DO = average of upstream, genic and 

downstream nucleosomes repsectively, TN = terminal nucleosome). 

Lower panels: average parameter change for all nucleosomes grouped by nucleosome 

category (circle = mean, intervals = standard error of the difference (SED)). 
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Fig5.11: Transcriptional Profiling of ChdA-/ChdB- Double Knockout. 

A) MA-plots of the relationship between mean gene expression and direction of mis-

regulation (red = significantly mis-regulated). 

B) Euler diagrams of the overlap between strongly (p < 0.05 & fold change > 2) up- and 

down-regulated genes. 

C) Average nucleosome score profiles around the TSS of genes commonly up (upper 

panel) and down (lower panel) regulated in the three mutants.  
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5.9.4  Combined Occupancy Defects of ChdA-/ChdB-

Globally, combined ChdA-/ChdB- loss rescues the occupancy defects of the individual 

mutants. To determine whether this is also the case at the level of individual genes I re-

examined previously identified subsets of divergently regulated genes in ChdA- and 

ChdB- (Fig5.8B). Surprisingly, combined remodeler loss does not rescue the occupancy

effects at individual genes. Rather, the effect of ChdB loss appears to be dominant over

that of ChdA, with both gene sets maintaining the direction of occupancy changes 

observed in ChdB-. The loss of a global occupancy effect therefore appears to be 

caused by amplification of the increased nucleosome signal within the subset of more 

lowly-expressed genes. Thus although ChdA and ChdB have opposing effects on 

nucleosome stability, they do not appear to be directly counteracting one another. The 

mechanism of how ChdB dominates nucleosome occupancy effects within the DKO is 

presently unclear. 

   

Fig5.12: Occupancy Effects of ChdB 

Appear Dominant over ChdA.

Heatmap of average nucleosome 

occupancy change for genes within 

previously identified gene subsets. Left 

lane indicates gene subset (blue = 

reduced occupancy in ChdB-, red = 

increased occupancy in ChdB-). 

Occupancy changes are calculated over 

matched WT samples.   
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5.10  Summary

Despite unique roles in regulating chromatin structure, loss of any individual spacing 

remodeler has a common effect on transcriptional regulation, dampening transcription 

of the most highly expressed genes and de-repressing un- or lowly-expressed genes. 

Due to this common effect the gene sets regulated by CHD and ISWI remodelers are 

highly over-lapping, and in combination the spacing remodelers either directly or 

indirectly regulate almost the entire Dictyostelium transcriptome. I also find that 

remodeling effects are linked to the expression level of genes, with chromatin defects 

being enriched in highly-expressed genes. Nonetheless, in addition to their common 

relationship with expression level, remodelers do have distinct regulatory roles. Isw is 

found to uniquely repress the transcription of transposable elements, with potential 

importance for genomic stability. In summary CHD and ISWI remodelers exhibit 

chromatin-regulating roles, all of which are required to optimise cell-type specific 

transcriptional programs.  
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Chapter 6:

Discussion
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6.1  Project Aims

The original aims of the current project were as follows:

• Generate knockout mutants for the previously unstudied, core SNF2 proteins 

present in Dictyostelium.

• Determine the roles of the major, transcription-related ATP-dependent 

chromatin remodelers in growth, development and chemotaxis through 

comparison of knockout mutant phenotypes.

• Perform MNase-sequencing on Isw- mutants, and map genome-wide 

nucleosome profiles in ChdA-, ChdB- and Isw- cell lines. 

• Determine the individual roles of ChdA, ChdB and Isw in the maintenance of 

primary in vivo chromatin structure

• Perform RNA-sequencing on Isw- cells and explore the relationship between 

nucleosome remodeling and transcriptional regulation for all CHD and ISWI 

family remoelers

• Investigate how the individual roles of spacing remodelers are combined to 

regulate primary chromatin structure and gene transcription 

6.2  Generation of Dictyostelium SNF2 Protein Mutants

The presented study has highlighted the diverse repertoire of SNF2 proteins in 

Dictyostelium, reconfirming previously identified homologs (Platt et al. 2013; Flaus et 

al. 2006), and highlighting some previously unannotated subfamily groupings. I 

established knockout cell lines for three of these SNF2 family members: Isw, Snf2a and

Swr. Together with previously generated ChdA-, ChdB-, ChdC- and Arp8- null mutants 

this provides a valuable resource for studying the roles and mechanisms of chromatin 

remodeling in this simple eukaryote.  

While multiple independent clones of Isw-, Snf2a- and Swr- mutants were generated 

with high efficiency, no Snf2b- mutants were isolated, possibly suggesting that Snf2b is 

an essential factor in Dictyostelium. Indeed SWI/SNF subfamily proteins in both yeast 

and mammals display a binary lethality effect. Sth1 knockout is lethal in S. cerevisiae 

(Laurent et al. 1992; Cairns et al. 1996), while Snf2 mutants are viable, although 

display slow growth on glucose caused by a defective transcriptional response and are 
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sporulation deficient (Abrams et al. 1986; Neigeborn & Carlson 1984; Hirschborn et al. 

1992). BRG1 (SMARCA4) KO is embryonic lethal in mice, yet BRM (SMARCA2) loss 

causes only a slight increase in body weight (Reyes et al. 1998; Bultman et al. 2000; 

Klochendler-Yeivin et al. 2000). 

This conservation of divergent effects upon SWI/SNF loss is intriguing, and suggests 

Snf2a homology to hBRM and Snf2b to hBRG1. However it is important to note that 

there are significant differences in the composition and functions of yeast and 

metazoan SWI/SNF family complexes, and it is presently unclear which, if either of 

these examples Dictyostelium may shadow. In S. cerevisiae Sth1 and Snf2 are 

incorporated into distinct, well defined complexes - RSC and SWI/SNF respectively. 

Mammalian BRG1  on the other-hand is incorporated into both the Brg1-associated 

factors (BAF) complex – which contains homologous subunits to ySWI/SNF, and the 

Polybromo-associated BAF (PBAF) complex – which contains homologous subunits to 

yRSC (Wang, Côté et al. 1996; Tang et al. 2010). The non-essential hBRM can also be 

incorporated mutually exclusively into the BAF complex. Beyond the core complex 

components (SNF5, BAF155, BAF170; Phelan et al. 1999), the subunit composition 

and functions of the BRG1- and BRM-incorporating BAFs are highly varied. BRM and 

BRG1 can display partially redundant, distinct  or even opposing functions given the 

cell type and environment of the complexes (Strobeck et al. 2002; Reyes et al. 1998; 

Flowers et al. 2009). Understanding of the mammalian SWI/SNF complexes is 

confounded by this complexity, indeed it is predicted that hundreds of distinct complex 

compositions may exist (Wu et al. 2009). Speculatively, given the simple developmental

program and limited number of cell types, the Dictyostelium SWI/SNF complexes may 

provide an useful intermediate between these two complexity extremes. Examination of

the composition and function of distinct cell-type or developmental-stage specific 

Dictyostelium SWI/SNF complexes could therefore be highly informative. Given the 

high frequency of mutation and/or epigenetic repression of SWI/SNF complexes in 

human cancers (Kadoch et al. 2013; Shain & Pollack 2013; Versteege 1998; Modena 

et al. 2005; Wilson & Roberts 2011; Lee et al. 2012), such studies would also be highly 

pertinent to human disease.  

6.3  Dictyostelium SNF2 Proteins in Growth, Development and Chemotaxis

All remodeler mutants studied display distinct phenotypic effects on cell growth, 

developmental timing or chemotaxis efficiency. Chromatin remodelers therefore fulfill 
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non-redundant biological roles in establishing and maintaining in vivo chromatin 

structure. This agrees with observations in mammalian cells, where despite expansion 

of of the SNF2 family from 17 in yeast to 53 in humans, examined remodelers retain 

unique biological functions (Flaus et al. 2006; Clapier & Cairns 2009; Ho & Crabtree  

2011). 

Snf2a loss has no significant effect on growth rate, but aggregation timing consistently 

lags slightly behind WT cells and chemotax less efficiently towards chemoattractant in 

a cAMP gradient. Snf2a is expressed strongly in growing cells, drops off following 

starvation and rises sharply again at around 8 hours, roughly corresponding to the 

aggregation stage (Parikh et al. 2010). Hence Snf2a may be required for the activation 

of genes involved in chemotactic signaling – which is important both for tracking 

bacteria in growing cells and streaming during aggregation. This would broadly fit with 

the roles of yeast Snf2. As detailed above, in contrast to the essential ySth1/hBRG1, 

ySnf2/hBRM knockouts display modest phenotypes. RSC complexes are thought to be 

required for genome-wide eviction of nucleosomes at NDRs and positioning of the +1 

nucleosome, essential for regulation of constitutively expressed genes (Parnell et al. 

2008; Hartley & Madhani 2009). SWI/SNF complexes on the other hand generally 

facilitate activation of inducible genes via promoter nucleosome eviction/remodeling, as

demonstrated at numerous individual loci including heat-shock induced genes (Qiu et 

al. 2015; Shivaswamy & Iyer 2008; Bryant et al. 2008; Schwabish & Struhl 2007; 

Peterson & Herskowitz 1992; Hirschhorn et al. 1992). Although undoubtedly an over-

simplification of these highly varied complexes, initial observations in Dictyostelium 

appear to fit within this general paradigm.

In contrast to the lethality exhibited by metazoan ISWI KO mutants (Deuring et al., 

2000; Stopka and Skoultchi, 2003; Arancio et al., 2010), ISWI loss is relatively well 

tolerated in Dictyostelium. Isw- mutants display no significant growth inhibition, and only

a slight developmental delay similar to that observed in Snf2a-. The observation that 

Isw mRNA and protein levels peak later in development, around 12-14h, may suggest 

developmental roles in the late mound/slugging stages; no morphological defects were 

observed in the current study but further assay of slugging efficiency may be revealing. 

Interestingly the speed of chemotactic migration is increased in the absence of Isw. 

This contrasts with the reduced chemotactic speeds observed in ChdA- and ChdC- 

mutants, despite a shared in vitro nucleosome spacing role between these two 

105



remodeler classes. Interestingly wipA, encoding a homolog of mammalian Wiskott-

Aldrich syndrome protein (WASP) interacting protein (WIP), is strongly repressed in the

absence of Isw. Mammalian WIP is known to stimulate F-actin polymerization at the 

leading edge and promote filopodia formation (Myers et al., 2006; Vetterkind et al., 

2002). Knockout of wipA in Dictyostelium increases F-actin polymerization and reduced

the speed, chemotactic index, and directionality of migration towards cAMP (Myers et 

al. 2006). Furthermore WIPa over-expressing cells are able to more rapidly adapt to 

changes in the chemoattractact gradient, whereas WIPa knock-down reduces 

response timing. Severe reduction of WIPa as expected in Isw mutants could therefore 

increase chemotactic speed by reducing the degree of directional deviation. On the 

other hand no significant change is observed in directionality or chemotactic index in 

Isw null cells, and we do observe a lesser, yet significant downregulation of other 

chemotaxis genes including the cAMP receptor carA-1. Hence, through its roles in 

transcriptional regulation, Isw may reduce the sensitivity of response to 

chemoattractant while simultaneously promoting the persistence of migration. 

Determining whether Isw directly induces wipA, and whether this regulation is 

conserved in human cells may be of relevance for diseases including Wiskott-Aldrich 

syndrome, cancer metastasis, and arthritis (Jin et al. 2008).

Swr knockout caused strong defects in all three assays – with growth rate reduced to 

around a third of WT Dictysotelium, aggregation delayed by ~3-4 hours, reduced 

mound sizes, stunted fruiting bodies, and reduced chemotactic speed and 

directionality. As opposed to ChdC remodelers, which influence growth rate through 

transcriptional regulation of metabolic pathways (Platt 2013), Swr appears to primarily 

affect cell division. Swr- mutants form large, multi-nucleated cells in adherent, but not 

shaking culture. This is, to our knowledge, the first example of an adherence-

dependent cytokinesis defect in Dictyostelium, and the mechanism is presently 

unknown. Interestingly, myosin II heavy chain (mhcA) null and glycogen synthase 

kinase 3 (GskA) null Dictyostelium exhibit cytokinesis defects in non-adherent culture, 

but complete division when returned to a solid surface (Knecht and Loomis, 1987; 

Harwood et al., 2013). The causes of cell division failures in these mutants are distinct: 

myosin is essential for constriction of the cleavage furrow, whereas GSK is involved in 

mitotic spindle dynamics. Two alternative forms of cell division on solid substrate were 

proposed – a more efficient, cell cycle-dependent attachment-assisted mitotic 

cleavage, possibly utilising an alternative driver of cleavage furrow constriction; and a 
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highly inefficient, cell cycle independent traction-mediated cytofission to physically 

separate sections of the cell (Uyeda et al. 2000; Zang et al. 1997). Growth of Swr- cells 

in suspension is still highly inefficient, hence we expect that a similar physical 

separation of cells occurs, possibly due to shear stress within shaking culture.

Given the known roles of Swr in incorporating the H2A variant - H2A.Z (Krogan et al. 

2003), an obvious explanation for exhibited defects would be mis-localisation of H2A.Z,

causing gene de-repression. Interestingly however, a H2A.Z knockout mutant 

established by the Chubb lab displays no strong defects in growth or development 

(personal communication with Dr Jonathan Chubb). This would strongly suggest 

H2A.Z-independent roles of Swr in Dictyostelium, however unlike the other major 

chromatin remodelers, the in vitro nucleosome remodeling activity of Swr1 is highly 

dependent on the presence of H2A.Z (Luk et al. 2010). Indeed additional roles are 

known for SWR-C beyond transcriptional regulation including chromosome 

segregation, double strand break repair, checkpoint adaptation and maintenance of 

pericentric heterochromatin (Gerhold et al. 2015; Papamichos-Chronakis et al. 2006; 

Rangasamy et al. 2004). However these are all thought to be dependent on H2A.Z 

incorporation. 

An intriguing connection exists between Swr and  the localisation of the centromeric H3

variant CENP-A which is essential for centromere formation, and highly conserved 

despite wide variation in centromere structure across eukaryotes (De Rop et al. 2011). 

CENP-A is exclusively centromeric, however in yeast over-expression of CENP-A, or 

prevention of proteolysis by Psh1 knockout causes mis-incorporation of CENP-A at 

NDR-flanking nucleosomes, particularly at longer NDRs, resulting in lethality (Collins et

al. 2004; Hewawasam et al. 2010; Ranjitkar et al. 2010). This pattern of mis-localisation

is strikingly similar to the binding pattern of Swr1 (Ranjan et al. 2013); indeed, CENP-A 

co-localises with H2A.Z-variant nucleosomes, yet displays no dependence on H2A.Z 

itself (Hildebrand & Biggins 2016). Furthermore, CENP-A is enriched in the chromatin 

fraction of swr1Δ cells. The authors emphasise the role of INO80-C in promoting mis-

incorporation; speculatively however, given observations in Dictyostelium we propose 

that SWR-C may actively oppose INO80-C to prevent mis-incorporation of CENP-A. 

Future work to validate this hypothesis may provide important, novel insights into the 

functions of the INO80/SWR family, but is also highly relevant to the mis-localisation of 

CENP-A in human cancers (Athwal et al. 2015).

107



6.4  CHD and ISWI Complexes Regulate Distinct Remodeling Events

In the present study I performed MNase-seq on the Isw- mutant cell line and developed

more robust, quantitative methods to allow detailed analysis of nucleosome maps from 

all four spacing remodeler mutants in Dictyostelium. Comparison of the global 

chromatin profiles of each cell line revealed distinct, characteristic nucleosome defects 

caused by loss of individual CHD and ISWI family remodelers. Importantly these 

analyses re-confirmed all published characteristics of ChdC- mutant chromatin (Platt  

2013). Furthermore the improved analysis pipeline was able to detect novel structural 

defects upon ChdC loss not identified using previous bioinformatic methods. Thus this 

work provides both a resource for the study of spacing remodelers in Dictyostelium, 

and contributes towards the relatively under-developed body of analysis techniques for 

nucleosome mapping data. 

Loss of any individual CHD or ISWI chromatin remodeler disrupts the global pattern of 

chromatin organisation. Although the profile of nucleosome changes is unique to each 

remodeler, a common pattern of susceptibility to disruption is observed across the 

genome. Mid-genic nucleosomes generally display greater disruption than terminal 

(+1/TN) and intergenic nucleosomes, which are largely unaffected by remodeler loss. 

The CHD proteins also influence occupancy of nucleosomes flanking coding regions (-

1/TN+1). This could be indicative of either remodeler targeting, or their redundancy at 

given genic positions. The precise binding profiles of ISWI and CHD proteins have 

been difficult to ascertain, likely due to a transient association with any individual 

nucleosome. Nonetheless studies generally observe binding at the promoter and 

activity at the +1 or throughout the gene body (Yen et al. 2012; Zentner et al. 2013; 

Tirosh et al. 2010; Siggens et al. 2015; Gkikopoulos et al. 2011; Shim et al. 2012; 

Pointner et al. 2012; Whitehouse et al. 2007; Simic et al. 2003). Hence the relative lack

of disruption at the +1 is likely due to functional redundancy, rather than an exclusion of

spacing remodelers from the gene termini. Indeed this relative insensitivity of terminal 

nucleosomes, and particularly the +1, to disruption under chromatin-perturbing 

conditions is observed in multiple systems (Yen et al. 2012; Gkikopoulos et al. 2011). 

On the other hand lack of distal intergenic disruption to chromatin structure likely 

indicates that CHD and ISWI family remodelers are primarily targeted to coding 

regions. Indeed the enrichment of mis-regulation in highly expressed genes across all 

four mutants suggests that association with transcription may be a common targeting 
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mechanism. Analysis of  the global binding pattern of Dictyostelium remodelers would 

be informative, both to confirm predicted targeting and to advance the poorly 

understood mechanisms of remodeler targeting. Another general feature of chromatin 

profiles is the mirroring of nucleosome parameter changes at the 5' and 3' ends of 

genes. As has been suggested previously in yeast this likely arises from gene looping 

allowing simultaneous regulation of chromatin structure from both 5' and 3' NDRs (Yen 

et al. 2012; O'Sullivan et al. 2004; Ansari & Hampsey 2005).

4.5  ChdA and ChdB Control Genic Nucleosome Occupancy

ChdA and ChdB remodeler mutants display complementary patterns of relative 

occupancy changes, with ChdA increasing, and ChdB decreasing genic occupancy. In 

each case the reciprocal of the genic occupancy change is observed at nucleosomes 

flanking the coding region (-1/TN+1); however intergenic nucleosomes are not globally 

perturbed. ChdA and ChdB therefore have opposing influences on the steady state 

nucleosome binding within gene bodies. Highly expressed genes exhibit reduced 

average nucleosome occupancy in our own data, and have been shown to exhibit 

increased nucleosome turnover in S. cerevisiae and Drosophila. Given the enrichment 

of occupancy defects in highly expressed genes we propose roles for ChdA and ChdB 

in regulating nucleosome turnover. CHD proteins have also been associated with 

nucleosome turnover in a range of other organisms. CHD2 knockdown (KD) or 

CHD1+CHD2 double KD in human cells increases H3 occupancy and reduces H3.3, 

suggesting that both human type I CHDs promote nucleosome turnover (Siggens et al. 

2015). Yeast chd1Δ display increased nucleosome turnover rates at the 3' end of 

genes (Park et al. 2014; Smolle et al. 2012). And CHD1 loss in flies decreases H3.3 

levels in flies, particularly at the 3' ends of long genes (Konev et al. 2007; Radman-

Livaja et al. 2012). Furthermore, as observed in the current study these effects are 

enriched in highly expressed genes (Siggens et al. 2015; Park et al. 2014; Smolle et al.

2012), suggesting that type I CHDs play a conserved role in regulating nucleosome 

turnover and stability in a transcription-linked manner.  

Changes in chromatin accessibility and susceptibility to MNase-digestion provide an 

alternative explanation for the loss or gain of nucleosome signal. The level of MNase-

digestion has been demonstrated to differentially effect nucleosome occupancy 

dependent on compaction of a given locus. Open regions, particularly around the NDR 
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and at the -1 nucleosome are more susceptible to MNase, leading to a over-digestion 

to sub-nucleosomal particle sizes at higher enzyme concentrations and loss of the 150 

bp nucleosomal signal. Conversely more compact chromatin produces increased signal

at higher MNase-concentrations (Mieczkowski et al. 2016). ChdB does not significantly 

influence genic fragment sizes, arguing against digestion sensitivity contributing to the 

decreased genic nucleosome signal. However at the -1 position ChdB mutants do 

display both increased size and occupancy, suggesting that ChdB may control 

occupancy through distinct mechanisms at distinct regions. Notably, CHD1 depletion in 

mammals causes decreased accessibility at a number of DNase hypersensitive loci 

and at the promoter (Siggens et al. 2015; Ehrensberger & Kornberg 2011; Radman-

Livaja et al. 2012); and similar effects are observed at Drosophila Hsp70 promoters 

(Morettini et al. 2011). ChdA loss on the other hand globally decreases nucleosome 

size, hence chromatin de-compaction may contribute to both decreased -1 signal and 

increased genic occupancy. Interestingly, as opposed to decompaction, CHD1 loss in 

mouse embryonic stem cells allows abherent spread of H3K9me3 (Gaspar-Maia et al. 

2009); and in flies CHD1 loss is associated with increased HP1 and H3K9me2 on 

polytene chromosomes (Bugga et al. 2013). However visually chromosomes in CHD1 

KD flies appear more decondensed, and display gross higher-order structural defects 

including loss of chromosome banding (Bugga et al. 2013). Hence, while the precise 

mechanism remains unclear, Chd1 appears to play a conserved role in regulation of 

global chromatin structure. The roles of CHD proteins in nucleosome turnover and 

stability, are likely closely intertwined with higher-level effects on chromatin accessibility

and structure.  

Multiple targeting mechanisms of type I CHD proteins have been proposed. The 

chromodomains of mammalian CHD1 have been shown to bind H3K4 di- or tri-

methylation which is enriched at promoters (Sims et al. 2005). However H3K4me2/3 

binding is not evident in yeast or flies, and CHD proteins are not enriched at 

H3K4me2/3 sites in mammals (Sims et al. 2005; Morettini et al. 2011). Alternatively, 

type I CHD proteins in yeast, flies and mammals interact with Mediator complex and 

transcription elongation factors (Khorosjutina et al. 2010; Simic et al. 2003; Shema-

Yaacoby et al. 2013; Smolle et al. 2012; Lin et al. 2011). The emerging model across all

eukaryotes therefore suggests promoter recruitment of CHD proteins at sites of active 

transcription, and action within the genebody to control nucleosome turnover in 

association with elongating RNAPII. The localisation of nucleosome parameter 
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changes in Dictyostelium CHD mutants fit well with this model. Notably however the 

detailed breakdown of nucleosome parameter changes by position highlights some 

differences between CHD proteins – the positioning changes of ChdB and ChdC are 

enriched at the 5' end. We posit that H3K4me2/3 binding could focus specific 

remodeler actions to the 5' end of genes in a transcription-independent manner. Unlike 

ChdB, ChdA also affects the occupancy of terminal nucleosomes, which may be 

indicative of a conserved role in transcription termination (Murawska & Brehm 2011). 

In summary we postulate the following model: ChdA remodelling decreases the stability

of genic nucleosomes, increasing turnover and H3.3 incorporation, while also playing 

an important, global role to maintain higher-order chromatin structure. ChdB 

antagonistically acts to stabilise genic nucleosomes, and has an additional role in 

promoting accessibility at the promoter and intergenic regions. Both CHD proteins are 

recruited to expressed genes, and likely translocate with the polymerase to optimise 

nucleosome turnover: ChdA facilitating passage, and ChdB stabilising nucleosomes in 

its wake. These roles would fit with the observed bivalent occupancy effects in the 

ChdA/ChdB DKO mutants; It is clear from transcriptional profiles and the lack of growth

inhibition in ChdA mutants that this nucleosome de-stabilising is not strictly required for 

transcription. Therefore in the absence of ChdA, transcription continues to evict 

nucleosomes as is necessary for its passage, leading to the dominant effect of ChdB 

loss and nucleosome destabilisation at highly transcribed genes. Globally these effects 

may be masked by the higher-order effect of ChdA causing a degree of reciprocal 

occupancy increase. While speculative this model provides a paradigm in which to 

design further experiments – remodeler ChIP-seq and nucleosome turnover assays 

would be particularly pertinent to validate the model. 

6.6  ChdC Influences Nucleosome Positioning, Spacing, Size and Organisation

In addition to the previously identified nucleosome positioning shifts at the +2 and +3 

positions (Platt 2013), the improved analysis pipeline has allowed detection of 

additional chromatin defects upon ChdC loss. Most notably, ChdC- displays increased 

nucleosome footprint size compared to matched WT samples. Like the size changes in 

ChdA- this effect does not appear to be localised to specific nucleosome positions, but 

globally increases fragment sizes produced by MNase-digestion by ~5bp. It is not 

possible with MNase-seq data to determine whether these size changes represent 

modification of the nucleosome structure, altered accessibility of nucleosomal DNA, 
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higher-order structural effects, or a change in the digestion conditions inside the 

nucleus influencing MNase activity. Given that H1 loss in mice has been demonstrated 

to cause a compensatory reduction in nucleosome repeat length (Fan et al. 2003), 

restriction of H1 incorporation by ChdC could potentially explain both size and spacing 

changes in the mutant; however we observe no enrichment of size changes in 

positionally altered genes. A modest decrease of genic nucleosome occupancy and 

stronger increase of occupancy at NDR flanking nucleosomes may alternatively 

indicate a role in increasing  chromatin accessibility. Finally, the dyad distribution or 

organisation of nucleosomes across the population is decreased, in keeping with a role

in maintaining nucleosomal array spacing.

6.7  Isw Organises Nucleosomal Arrays to Repress TE

Interestingly, despite displaying the strongest disruption of average nucleosome 

structure out of all four remodeler mutants, no dominant nucleosome parameter defect 

was identified in Isw-. Nucleosomes at the 5' end of genes have reduced nucleosome 

repeat lengths, occupancy is slightly decreased across the gene body and nucleosome

positioning across the population is globally less uniform. We propose that as opposed 

to the more specialised roles of the CHD family remodelers, Isw plays a more general 

role - utilising its nucleosome spacing activity to organise nucleosomal arrays. The 

requirement for Isw to maintain phased nucleosomal arrays is somewhat at odds with 

observations in yeast – S. cerevisiae isw1Δ and isw2Δ knockouts, or isw1Δ/isw2Δ 

double knockout only modestly disrupts nucleosome array organisation at mid-genic 

regions (Gkikopoulos et al. 2012; Whitehosue et al. 2007; Tirosh et al. 2010; Yen et al. 

2012). And additional knockout of Chd1 is required to affect nucleosome array 

organisation to the extent observed in Dictyostelium Isw-. Revealingly, ISWI family 

remodelers appear to be entirely dispensable in S. pombe, which possess two CHD 

family members, Hrp1 and Hrp3, but no ISWI. hrp3Δ and hrp1Δ/3Δ mutants exhibit 

similar nucleosomal array disruption to that observed in isw1Δ/chd1Δ budding yeast or 

Isw- Dictyostelium (Hennig et al. 2012; Shim et al. 2012). Comparison between these 

three distally related species therefore suggests that, while  the role of spacing 

remodelers to organise nucleosomal arrays is conserved, this function can be 

performed by either ISWI or CHD SNF2 proteins. This raises the questions of how 

specialised functions are therefore imposed on the CHD remodelers in Dictyostelium; 

and which spacing remodelers are responsible for nucleosome array organisation in 

human cells. 
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Global expression analysis reveals that, similar to ChdA- and ChdB-, and unlike ChdC-, 

genes mis-regulated in Isw- did not appear to be strongly enriched in specific functional 

categories. On the other hand we observed a significant mis-regulation of transposable

elements upon Isw loss. The majority of TE are highly up-regulated in the mutant, 

indicating that Isw is important for repression of these potentially deleterious elements. 

TE are relatively abundant in Dictyostelium, making up ~9.6% of the genome in total 

(Glöckner et al. 2001). While transposable elements have been shown to play key roles

in transcriptional regulation in mammalian genomes (Faulkner et al. 2009), most 

transposable elements are repressed in heterochromatin marked by H3K9me3 and 

DNA methylation (Groh & Schotta, 2017). Multiple targeting mechanisms are involved 

in TE silencing, many of which may be specific to the class of element involved. Both 

small interfering RNA (siRNA) and antisense transcription have been demonstrated to 

reduce retrotransposition of mammalian LINE-1 elements (Yang & Kazazian, 2006; Li 

et al. 2014); while Piwi-interacting RNA (piRNA) pathways degrade retrotransposon 

mRNAs and induce DNA methylation at TE (Aravin et al. 2008). Indeed CpG DNA 

methylation is required for epigenetically stable repression of TE in mammals 

(Bourc’his & Bestor, 2004). Finally, KRAB-containing zinc finger proteins (KRAB-ZFPs) 

directly bind TE and recruit KAP1 leading to DNA and histone methylation (Rowe & 

Trono, 2011; Ecco et al. 2016). Interestingly interaction of the zinc finger protein Zfp819

has previously been reported with the chromatin remodeler Chd4 (Zheng et al. 2013), 

raising the possibility that Isw could be directly recruited to TE via KRAB-ZFPs.

The transcriptional effect outlined would be consistent with a global role in maintaining 

nucleosomal arrays -  loss of which would not be expected to cause mis-regulation of 

specific pathways, but may allow aberrant transcription of repressed regions by altering

genomic accessibility. Isw loss in yeast is known to result in cryptic transcription 

(Whitehouse et al. 2007), potentially caused by nucleosome shifts exposing extended 

lengths of linker DNA which can be subsequently bound by TF and PIC components. 

Additionally, Isw2 is thought to have a direct repressive impact by shifting the +1 

nucleosome upstream, into the NDR to physically occlude promoters and prevent PIC 

formation (Kent et al. 2001; Yen et al. 2012; Whitehosue et al. 2007). ISWI family 

remodelers form at least three separate complexes in S. cerevisiae (Isw1a, Isw1b and 

Isw2). Isw1a and Isw1b both incorporate Isw1 as their catalytic subunit but target 

largely separate gene regions and differentially remodel yeast chromatin (Morillon et al.
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2003; Yen et al. 2012; Tirosh et al. 2010; Whitehouse et al. 2007). Hence it is likely that

the chromatin defects observed in Isw- represent the cumulative actions of multiple 

distinct remodeling complexes. Determining the composition of such complexes would 

be important for relating presented finding to human ISWI remodeling.

6.8 Spacing Remodelers are Required for Optimal Transcriptional Regulation

Unexpectedly all four CHD and ISWI mutants display a common transcriptional 

response to remodeler loss. Genes which are highly expressed within WT 

Dictyostelium at growth are frequently down-regulated, while lowly-expressed genes 

are up-regulated in each mutant. As a result the gene sets mis-regulated in remodeler 

mutants strongly overlap for all four cell lines. This is consistent with overlapping 

binding and transcriptional regulation of CHD and ISWI remodelers observed from 

yeast to mammals (Morris et al. 2014; Siggens et al. 2015; Yen et al. 2012). 

Furthermore the transcriptional disruption in remodeler mutants appears to correlate 

with the changes observed between WT cells at growth and 10h of development, 

roughly corresponding to the late streaming/early mound stage of development. We 

propose that the distinct functional roles of the CHD and ISWI family remodelers are all

necessary to organise chromatin in a cell-type specific configuration. Disrupting the 

function of any individual remodeler impedes cell-type specific transcriptional 

regulation. In growth-stage Dictyostelium this causes aberrant de-repression of 

developmentally-regulated genes. Interestingly, CHD1 is essential for maintenance of 

pluripotency in mouse embryonic stem cells (mESC), and formation of induced 

pluripotent stem cells (iPSCs) (Gaspar-Maia et al. 2009). CHD1 loss in mESCs causes 

stochastic differentiation, primarily towards a neural lineage (Gaspar-Maia et al. 2009). 

Hence a requirement for spacing remodelers in stabilising or optimising cell-type 

specific transcriptional programs appears to be conserved from simple eukaryotes 

through to mammals.  

6.9  Summary

Through phenotypic analysis and comparison of generated remodeler mutant cell lines 

I have demonstrated that Dictyostelium chromatin remodelers play distinct non-

redundant roles in growth, development and chemotaxis. Detailed analysis of the 

nucleosome parameter changes in the CHD and ISWI family mutants extends this 
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observation, to reveal that each remodeler also has distinct non-redundant roles in 

regulating nucleosome positioning, occupancy, distribution and size, primarily within the

gene bodies. These in-depth analyses reveal novel, testable hypotheses regarding the 

mechanisms of CHD and ISWI mediated remodelling. Comparison of nucleosome 

parameters with expression profiles suggests that all CHD and ISWI remodelers are 

targeted by transcriptional machinery to highly expressed genes in order to maintain 

chromatin structure. The distinct remodeling activities of all spacing remodelers in 

regulating nucleosome turnover and positioning are required to optimise cell-types 

specific transcriptional programs. This provides a paradigm for understanding the 

myriad roles of CHD and ISWI remodelers in higher eukaryotes in developmental 

regulation, cancer suppression and stem cell maintenance. 
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