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Abstract 

Borderline personality disorder (BOR) is determined by environmental and genetic factors, 

and characterized by affective instability and impulsivity, diagnostic symptoms also observed 

in manic phases of Bipolar Disorder (BIP). Up to 20% of BIP patients show comorbidity with 

BOR. This report describes the first case-control genome-wide association study (GWAS) of 

BOR, performed in one of the largest BOR patient samples worldwide. The focus of our 

analysis was: (i) to detect genes and gene-sets involved in BOR; and (ii) to investigate the 

genetic overlap with BIP. As there is considerable genetic overlap between BIP, Major 

Depression (MDD) and Schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we 

also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests, 

and gene-set-analyses were performed in 998 BOR patients and 1,545 controls. LD score 

regression was used to detect genetic overlap between BOR and these disorders. Single 

marker analysis revealed no significant association after correction for multiple testing. Gene-

based analysis yielded two significant genes: DPYD (p=4.42x10-7) and PKP4 (p=8.67x10-7); 

and gene-set-analysis yielded a significant finding for exocytosis (GO:0006887, pFDR=0.019). 

Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most 

notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 

[p=2.99x10-3]), SCZ (rg=0.34 [p=4.37x10-5]), and MDD (rg=0.57 [p=1.04x10-3]). Our study is 

the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. 

Whether this is confined to transdiagnostic clinical symptoms should be examined in future 

studies.  



Introduction 

Borderline Personality Disorder (BOR1) is a complex neuropsychiatric disorder with a lifetime 

prevalence of around 3% (1). Untreated cases often have a chronic and severely debilitating 

clinical course (1). BOR affects up to 20% of all psychiatric inpatients, and is associated with 

high healthcare utilization. BOR therefore represents a substantial socio-economic burden 

(2, (3).  

BOR is characterized by affective instability, emotional dysregulation, and poor interpersonal 

functioning (3). Suicide rates in BOR range between 6% and 8%, and up to 90% of patients 

engage in non-suicidal self-injurious behavior (4). Other prototypical features include high-

risk behaviors and impulsive aggression. Current theories view dysfunctions in emotion 

processing, social interaction, and impulsivity as core psychological mechanisms of BOR (5). 

To date, genetic research into BOR has been limited. Available genetic studies have involved 

small samples and focused on candidate genes, while no genome-wide association study 

(GWAS) of BOR patients has yet been performed (6). However, Lubke et al. (2014) 

conducted a GWAS of borderline personality features using data from three cohorts 

comprising n=5,802, n=1,332 and n=1,301 participants, respectively (7). Using the borderline 

subscale of the Personality Assessment Inventory (PAI-BOR), four Borderline personality 

features (affect instability, identity problems, negative relations, and self-harm) were 

assessed. The most promising signal in the combined analysis of two samples was for seven 

SNPs in the gene SERINC5, which encodes a protein involved in myelination. Two of the 

SNPs could be replicated in the third sample. Interestingly, here, the effect was highest for 

the affect instability items, i.e., features that are key characteristics of manic phases of 

Bipolar Disorder (BIP).  

Understanding of the pathogenesis of BOR remains limited. Both environmental and genetic 

factors are known to play a role in BOR etiology. Familial aggregation has been 

demonstrated (8, (9), and heritability estimates from twin studies range from 35% to 65%, 

with higher heritability estimates being obtained with self-ratings (10, (11, (12).  

1 For the sake of readability, we have decided to use the rather unconventional abbreviation “BOR” for 
Borderline Personality Disorder and the abbreviation “BIP” for Bipolar Disorder. 



The potential comorbidity between BOR and BIP is part of an ongoing debate. For example, 

Fornaro et al. (2016) report substantial comorbidity of ~20% with BIP (13), whereas Tsanas 

et al. (2016) find clear symptomatic differences between these two diagnostic groups. BOR 

displays an overlap of some symptoms with BIP, such as affective instability (14). In contrast, 

features such as dissociative symptoms, a feeling of chronic emptiness, and identity 

disturbances are specific to BOR (15). To date, no twin or family study has generated 

conclusive results concerning a genetic overlap between the two disorders (16, (17). 

However, a twin study (18) and a large population based study using polygenic risk score 

analyses (19) indicate a genetic overlap between Borderline personality features and 

neuroticism, an established risk factor for BIP and other psychiatric disorders (20). 

The present study represents the first case-control GWAS in BOR, and was performed in 

one of the largest BOR patient samples worldwide. Given the limited heritability and the 

expected complex genetic architecture of BOR, the sample is too small to generate 

significant results for single markers. Instead, the main aim of the investigation was to detect: 

(i) genes and gene-sets with a potential involvement in BOR; and (ii) potential genetic 

overlap with BIP. As a substantial overlap of common risk variants exists between BIP and 

Schizophrenia (SCZ), and to a lesser extent between BIP and Major Depressive Disorder 

(MDD), and as there is also a high comorbidity of BOR and MDD, a further aim of the study 

was to determine whether any observed genetic overlap between BOR and BIP, MDD and 

SCZ was driven by disorder-specific genetic factors using LD-score regression and polygenic 

risk scores (PRS). 

Materials and Methods 

Participants 

The present sample comprised 1,075 BOR patients and 1,675 controls (21). All participants 

provided written informed consent prior to inclusion. The study was approved by the 

respective local ethics committees.  



Patients were recruited at the following German academic institutions: Department of 

Psychosomatic Medicine, Central Institute of Mental Health, Mannheim (n=350); Department 

of Psychiatry and Psychotherapy, University Medical Center Mainz (n=231); and the 

Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin (n=494). Inclusion 

criteria for patients were: age 16 to 65 years; Central European ancestry; and a lifetime 

DSM-IV diagnosis of BOR. The control sample comprised 1,583 unscreened blood donors 

from Mannheim, and 92 subjects recruited by the University Medical Center Mainz.  

Clinical assessment 

Diagnoses of BOR were assigned according to DSM-IV criteria and on the basis of 

structured clinical interviews. The diagnostic criteria for BOR were assessed using the 

German version of the IPDE (22) or the SKID-II (23). All diagnostic interviews were 

conducted by trained and experienced raters. BOR patients with a comorbid diagnosis of BIP 

or SCZ assessed with SKID-I (23) were excluded. 

Genotyping 

Automated genomic DNA extraction was performed using the chemagic Magnetic Separation 

Module I (Chemagen Biopolymer-Technologie AG; Baesweiler; Germany). Genotyping was 

performed using the Infinium PsychArray-24 Bead Chip (Illumina, San Diego, USA).  

Quality control and Imputation 

A detailed description of the quality control and imputation procedures is provided elsewhere 

(24).  

Briefly, quality control parameters for the exclusion of subjects and single nucleotide 

polymorphisms (SNPs) were: subject missingness>0.02; autosomal heterozygosity deviation 

(|Fhet|>0.2); SNP missingness>0.02; difference in SNP missingness between cases and 

controls>0.02; and SNP Hardy-Weinberg equilibrium (p<10−6 in controls; p<10−10 in cases). 



Genotype imputation was performed using the pre-phasing/imputation stepwise approach in 

IMPUTE2/SHAPEIT (default parameters and a chunk size of 3 Mb) (25, (26), using the 1000 

Genomes Project reference panel (release “v3.macGT1”) (27).  

Relatedness testing and population structure analysis were performed using a SNP subset 

that fulfilled strict quality criteria (INFO>0.8, missingness<1%, minor allele frequency 

(MAF)>0.05), and which had been subjected to linkage disequilibrium (LD) pruning (r2>0.02). 

This subset comprised 63,854 SNPs. In cryptically related subjects, one member of each pair 

( -hat>0.2) was removed at random following the preferential retention of cases over 

controls. Principal components (PCs) were estimated from genotype data (see 

Supplementary Figure 1-6), and phenotype association was tested using logistic regression. 

The impact of the PCs on genome-wide test statistics was assessed using λ. 

Association Analysis 

Including the first four PCs as covariates, an additive logistic regression model was used to 

test single marker associations, as implemented in PLINK (28). The p-value threshold for 

genome-wide significance was set at 5x10-8.  

Gene-based-analysis 

To determine whether genes harbored an excess of variants with small p-values, a gene-

based test was performed with MAGMA Version 1.04 (http://ctg.cncr.nl/software/magma) 

(29) using genotyped markers only, filtered with a MAF>1% (n=284,220). This test uses 

summary data, and takes LD between variants into account. SNPs within +/-10 kb of the 

gene boundary were assigned to each gene. Obtained p-values were Bonferroni-corrected 

for the number of tested genes (n=17,755, p=2.8x10-6).  

Gene-set-analysis 

Gene-set-based analysis was implemented using genotyped markers only, filtered as above. 

As in the gene-based-analysis, SNPs within +/-10 kb of the gene boundary were assigned to 



each gene. Gene-set-analyses were carried out using Gene Ontology (GO, 

http://software.broadinstitute.org/gsea/msigdb/) terms.  

Discovery gene-set-based-analysis was carried out using i-GSEA4GWASv2 

(http://gsea4gwas-v2.psych.ac.cn/) (30). The size of the gene-sets was restricted to 20-200 

genes, and the major histocompatibility complex (MHC) region was excluded. In total 674 

gene-sets were tested. Results were adjusted for multiple testing using false discovery rate 

(FDR). To validate the significant finding, the respective gene-set was investigated with i.) 

GSA-SNP, using the p-value of the second-best SNP in each gene (https://gsa.muldas.org) 

(31), and ii.) MAGMA using summary data and a nominal p-value threshold of p<0.05. 

LD-Score Regression 

To investigate a possible genetic overlap between BOR and SCZ, BIP and MDD, LD-score 

regression was performed (32). Genetic correlations between BOR and (i) BIP, (ii) SCZ, and 

(iii) MDD were calculated (33) using the result files of the Psychiatric Genomics Consortium 

(PGC) metaanalyses for SCZ (33,640 cases & 43,456 controls) (34), BIP (20,352 cases & 

31,358 controls) (35) and MDD (16,823 cases & 25,632 controls) (35). There was no overlap 

in cases or controls of the present BOR GWAS sample with the PGC samples. 

Polygenic Risk Score  

To determine the impact of polygenic risk on BOR and subgroups (i.e., BOR with and without 

MDD), polygenic risk scores (PRS) were calculated for each subject based on the above-

mentioned PGC datasets. 

To obtain a highly informative SNP set with minimal statistical noise, the following were 

excluded: low frequency SNPs (MAF<0.1); low-quality variants (imputation INFO<0.9) and 

indels. Subsequently, these SNPs were clumped discarding markers within 500 kb of, and in 

high LD (r2≥0.1) with, another more significant marker. From the MHC region, only one 

variant with the strongest significance was retained. PRS were calculated as described 

elsewhere (36). This involved p-value thresholds 5x10-8, 1x10-6, 1x10-4, 0.001, 0.01, 0.05, 



0.1, 0.2, 0.5, and 1.0, and multiplication of the natural logarithm of the odds ratio of each 

variant by the imputation probability for the risk allele. The resulting values were then totaled. 

For each subject, this resulted in one PRS for SCZ, MDD, and BIP for each p-value 

threshold. 

In a first step, the association of the PRS for BIP, SCZ, and MDD with BOR case control 

status was analyzed using standard logistic regression and by including the four PCs as 

covariates. For each p-value threshold, the proportion of variance explained (Nagelkerke’s 

R2) in BOR case-control status was computed by comparison of a full model (covariates + 

PRS) score to a reduced model (covariates only). 

For further exploratory analysis, the p<0.05 PRS for each disorder was selected (i.e. 

including all markers that reached nominal significance in the training samples). To 

determine whether the different scores contribute independently to the case-control status, a 

regression including the PRS for MDD, SCZ, and BIP and the four PCs was computed. In a 

secondary analysis, two further models were computed. These included the PRS for BIP and 

the PRS of either MDD or SCZ, while controlling for the four PCs. 

Furthermore, PRS were analyzed by differentiating between controls, and patients with or 

without comorbid MDD. For each PRS, a linear model was computed using the PRS as a 

dependent variable, disease state as an independent variable, and the four PCs as 

covariates. Differences between groups were assessed using post-hoc tests (Bonferroni-

corrected). 

Results 

Sample characteristics 

Genetic quality control led to the exclusion of 207 subjects. Reasons for exclusion were: (i) 

insufficient data quality (low call rate), n=6; (ii) relatedness, n= 63; and (iii) population outlier 

status, n= 138. After quality control, the sample comprised 998 BOR cases (914 female / 84 

male) and 1,545 controls (868 female / 677 male). Mean age for cases was 29.58 years 

(range: 18–65 years, standard deviation (SD=8.64)). Mean age for controls was 44.19 years 



(range: 18–72 years, SD=13.24) (details see Supplementary Table 1). Of the 998 cases, 666 

had co-morbid life-time MDD, and 262 did not (data missing for 40 cases).  

Single marker analysis 

A total of 1,0736,316 single markers were included in the analysis. As expected for GWAS 

on a complex psychiatric disorder with the current sample size, the single marker analysis 

revealed no significant hit after correction for multiple testing (see Figure 1&2). The most 

significant marker was rs113507694 in DPPA3 on chromosome 12 (p=2.01x10-07; OR=0.35, 

MAF=0.03, INFO=0.59). Single markers with p<1x10-5 are listed in Supplementary Table 2.  

Gene-based-analysis 

In the gene-based-analysis, a total of 17,755 genes were tested. Two genes showed 

significant association with BOR after correction for multiple testing: the gene coding for 

Plakophilin-4 on chromosome 2 (PKP4; p=8.24x10-7); and the gene coding for 

dihydropyrimidine dehydrogenase on chromosome 1 (DPYD, p=1.20x10-6). The most 

significant genes (p<5x10-4) are listed in Table 1. The top hit of the previous GWAS of 

Borderline personality features, SERINC5, achieved nominal significance in the present 

study (puncorrected=0.016).

Gene-set-analysis 

Gene-set-analysis with i-GSEA4GWASv2 revealed one significant gene-set: exocytosis (GO: 

0006887; pFDR=0.019). Of 25 genes in this gene-set, 22 were mapped with variants and 15 

showed nominally significant associations. Details on significant and non-significant genes in 

this gene-set are provided in Supplementary Table 3. All gene-sets with puncorrected<0.01 are 

shown in Table 2. A technical replication analysis with GSA-SNP and MAGMA confirmed the 

gene-set exocytosis (GSA-SNP: puncorrected=2.32x10-4; MAGMA: puncorrected = 0.056). 

LD-Score regression 



Significant genetic correlations with BOR were found for BIP (rg=0.28; SE=0.094; p=2.99x10-

3), MDD (rg=0.57; SE=0.18; p=1.04x10-3), and SCZ (rg=0.34; SE=0.082; p=4.37x10-5); A 

meta-analytic comparison revealed no significant differences between the correlations (all p 

> 0.13). 

Polygenic Risk Score  

PRS analysis revealed significant associations with BOR for the PRS of BIP, MDD, and SCZ. 

SCZ PRS were significant for all investigated thresholds. BIP and MDD scores were 

significant for all PRS that included SNPs with p-values higher than 0.0001 and 0.001 

respectively (see Supplementary Table 4). The share of variance explained in BOR case-

control status (Nagelkerke’s R²) by the respective PRS was up to 0.86% for BIP; up to 3.1% 

for SCZ; and up to 2.1% for MDD (see Figure 3 and Supplementary Table 4).  

Simultaneous addition of the PRS for SCZ, BIP, and MDD (threshold p<0.05) to the 

regression model explained 4.4% of the variance (Nagelkerke’s R²) in BOR case-control 

status. The PRS for SCZ and the PRS for MDD were significant predictors (p=9.78x10-9 and 

p=1.9x10-7, respectively). The PRS for BIP was not a significant predictor in this model 

(p=0.28).  

A secondary analysis was then performed including: (i) BIP PRS with MDD PRS; and (ii) BIP 

PRS with SCZ PRS. Here, BIP PRS explained variance independently of MDD PRS 

(p=0.0067), but not of SCZ PRS (p = 0.11). 

Differentiation between cases with and without comorbid MDD and controls revealed 

significant effects of BOR diagnosis on PRS for BIP, SCZ, and MDD (all p<0.001, see Figure 

4). Post-hoc analyses revealed no differences in PRS for the BIP, SCZ, or MDD PRS of the 

BOR subgroup with comorbid MDD compared to the BOR subgroup without MDD (all p>0.5).  

Compared to controls, PRS for SCZ and MDD were significantly increased in the BOR 

subgroups with and without comorbid MDD (all p<0.001). The PRS for BIP only showed a 



significant difference to controls in the BOR subgroup with comorbid MDD (p<0.001, see 

Figure 4). 

Discussion 

The present study is the first case-control GWAS of BOR. As expected, no genome-wide 

significant association was found for any single marker. In the gene-based test, however, two 

genes achieved genome-wide significance: Dihydropyrimidine Dehydrogenase (DPYD) and 

Plakophilin4 (PKP4). DPYD encodes a pyrimidine catabolic enzyme, which is the initial and 

rate-limiting factor in the pathway of uracil and thymidine catabolism. Genetic deficiency of 

this enzyme results in an error in pyrimidine metabolism (37). This is associated with 

thymine-uraciluria and an increased risk of toxicity in cancer patients receiving 5-fluorouracil 

chemotherapy (http://www.ncbi.nlm.nih.gov/gene/1806). Recent Psychiatric Genomics 

Consortium (PGC) metaanalyses revealed an association between DPYD and SCZ and BIP 

(34, (38, (39). DPYD contains a binding site for the micro-RNA miR-137, which has 

previously been associated with schizophrenia (40), and a previous exome sequencing study 

reported two putative functional de novo variants in DPYD in cases with SCZ (41). PKP4 is 

involved in the regulation of cell adhesion and cytoskeletal organization (42). In pathway 

analyses of PGC GWAS data, cell adhesion was associated with BIP (43), and SCZ (44), 

whereas cell junction was implicated in MDD, as well as in an integrative pathway analysis of 

all three disorders (45).  

SERINC5, which was the top hit of the previous GWAS of Borderline personality features (7), 

achieved nominal significance in the present study. The protein SERINC5 incorporates 

serine into newly forming membrane lipids, and is enriched in myelin in the brain (46). 

Previous research suggests that decreased myelination is associated with a reduced 

capacity for social interaction (7, (47).  

The gene-set analyses yielded significant results for exocytosis. In neuronal synapses, 

exocytosis is triggered by an influx of calcium and critically underlies synaptic signaling. 



Dysregulated neuronal signaling and exocytosis are core features of neurodevelopmental 

psychiatric disorders such as the autism spectrum disorders and intellectual disability (48, 

(49). Moreover, recent findings from large metaanalyses have implicated dysregulated 

neuronal signaling and exocytosis in the molecular mechanisms of BIP, SCZ, and MDD (48, 

(50, (51). These processes may now represent promising starting points for further research 

into BOR.  

The most interesting finding of this study is that BOR showed a genetic overlap with BIP, 

SCZ, and MDD. Notably, BIP did not show a higher correlation with BOR (rg=0.28) than SCZ 

(rg=0.34) or MDD (rg=0.57). In view of the present sample size, these values must be viewed 

with caution. A more accurate estimation of these correlations will require calculations in 

larger cohorts.  

Although comorbid BIP was excluded in the present BOR patients, the possibility that the 

observed genetic overlap between BOR and BIP was at least partly attributable to 

misdiagnosis cannot be excluded. However, an alternative explanation appears more likely, 

i.e. that disorders currently categorized as BOR and BIP share a common genetic 

background, and they also do so with SCZ and MDD. This hypothesis is supported by the 

present observation of a genetic overlap between BOR and SCZ, two disorders that are 

rarely misdiagnosed by psychiatrists, despite the presence of common psychotic symptoms.  

An explanation could also be that the genetic commonality between BOR and BIP, SCZ, and 

MDD might be due to a common effect of MDD. Prior to the introduction of DSM-IV, a history 

of MDD was required for a diagnosis of BIP, and MDD has a high prevalence in patients with 

SCZ (25-85%) (52, (53). Therefore, the MDD genetic risk variants that are common to BOR, 

BIP, and SCZ may be responsible for the observed overlap. For this reason, we conducted 

two further analyses. First, we compared PRS of BIP, SCZ, and MDD in subsamples of BOR 

patients with (~60%) and without comorbid MDD. Here, no differences in any of the PRS 

were found. Second, we performed a joint analysis of PRS of BIP, SCZ, and MDD in a 

logistic regression analysis in BOR patients vs. controls. Here, no differences were found in 

any of the PRS. Second, we performed a joint analysis of the PRS of BIP, SCZ, and MDD in 



a logistic regression analysis in BOR patients vs. controls. Here, both the SCZ and the MDD 

risk score explained variance in BOR case-control status independently. Secondary analysis 

revealed that the BIP risk score explained variance independently of the MDD risk score but 

not of the SCZ risk score. These results indicate that comorbidity with MDD does not explain 

the genetic overlap between BOR and BIP, SCZ, and MDD. However, the training sets differ 

in terms of their power to detect underlying risk variants, and therefore the derived PRS differ 

in terms of the variance they can explain. 

It must be noted, that in the PGC-BIP, -SCZ and -MDD samples, controls are partly 

overlapping. However, it is unlikely that this drives the genetic correlation of BOR with those 

disorders as the overlap of controls in these samples is rather small (under 10%) (54). Also, 

the joint logistic regression analysis demonstrated that polygenic risk for SCZ and MDD 

contributed independently to the BOR risk (see above). 

The present study had several limitations. First, despite being one of the largest BOR 

samples available worldwide, the sample size was small in terms of the estimation of 

heritability. Replication of the present results is warranted in larger, independent cohorts. 

This should include the investigation of non-European samples. Second, no information was 

available on the presence of common clinical features such as psychotic symptoms and 

affect instability. This precluded detailed analysis of the identified genetic overlap. Future 

studies in larger cohorts should also investigate more detailed phenotypes, including 

comorbid axis I and axis II disorders, such as addiction and personality disorders, 

respectively. Third, the observation that psychiatric patients often establish non-random 

relationships with persons affected by the same or another psychiatric disorder (55), and 

therefore have offspring with a higher genetic risk for psychiatric disorders, might contribute 

to the observed genetic correlation of BOR with BIP, SCZ, and MDD. However, the LD score 

method does not investigate the impact of assortative mating (32). Therefore, assessment of 

the degree to which this phenomenon may have influenced the genetic correlation estimates 

was beyond the scope of the present study.”



Despite these limitations, the results indicate that neither comorbidity with MDD nor risk 

variants that are exclusive to MDD explain the genetic overlap between BOR and BIP, SCZ, 

and MDD. Future investigations of larger data sets for BOR and other psychiatric disorders 

are warranted to refine the analysis of shared and specific genetic risk.  

Future studies are warranted to delineate the communalities and specificities of the 

respective disorders. 

Conclusion 

In summary, the present study is the first GWAS of patients diagnosed with BOR. The results 

suggest promising novel genes and a novel pathway for BOR, and demonstrate that, rather 

than being a discrete entity, BOR has an etiological overlap with the major psychoses. The 

genetic overlap with BIP is consistent with the observation that some diagnostic criteria for 

BOR overlap with those for BIP. The overlap between BOR and SCZ and MDD is consistent 

with previous observations of genetic overlap of other psychiatric disorders (56). Given that 

BOR patients display specific clinical symptoms not observed in patients with other 

psychiatric disorders, knowledge of shared and non-shared genetic and clinical features will 

be important for the development of personalized treatment approaches. 

Supplementary information is available at Translational Psychiatry’s website. 
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Figure Legends 

Figure 1: Quantile-Quantile plot. Quantile-Quantile plot of the case-control analysis (998 cases; 
1,545 controls) showing expected and observed –log10 p-values. The shaded region indicates the 
95% confidence interval of expected p-values under the null hypothesis. 

Figure 2: Manhattan plot showing association results. Manhattan plot of the case-control analysis 
(998 cases; 1,545 controls). For each SNP, the chromosomal position is shown on the x-axis, and the 
–log10 p-value on the y-axis. The red line indicates genome-wide significance (p<5x10-8) and the blue 
line indicates suggestive evidence for association (p<1x10-5). 

Figure 3: Polygenic Risk Score analysis. The proportion of variance explained in case-control 
status (y axis; Nagelkerke’s R²) by the PRS for BIP, SCZ, and MDD is depicted for the different p-
value cutoffs used in the calculation of the PRS. Principal components were included in the models to 
control for population stratification. PRS = Polygenic risk score; BIP = Bipolar Disorder; MDD = Major 
Depressive Disorder; SCZ = Schizophrenia; ns = non-significant; 1* p<0.05; 2* p<0.001; 3* p<1x10-4; 
4* p<1x10-6; 5* p<1x10-8; 6* p<1x10-10; 7* p<1x10-12

Figure 4: Polygenic Risk Score analysis in subgroups. Mean z-standardized PRS and standard 
error (SE) for BIP, SCZ, and MDD are shown in the control group, all cases, and in cases with and 
without comorbid MDD. PRS with a p-value threshold of p=0.05 were selected for this comparison and 
principal components were included in the models to control for population stratification. The numbers 
at the top of each bar indicate the significance of the difference in the respective PRS in comparison to 
the control group. BOR = Borderline Personality Disorder; BIP = Bipolar Disorder; MDD = Major 
Depressive Disorder; SCZ = Schizophrenia; ns = non-significant; 1* p<0.05; 2* p<0.001; 3* p<1x10-4; 
4* p<1x10-6; 5* p<1x10-8; 6* p<1x10-10; 7* p<1x10-12
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Figures

Supplementary Figure 1: Scatter plot of principal components 1 and 2

Supplementary Figure 2: Scatter plot of principal components 1 and 3
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Supplementary Figure 3: Scatter plot of principal components 2 and 3

Supplementary Figure 4: Scatter plot of principal components 2 and 4

Supplementary Figure 5: Scatter plot of principal components 3 and 4
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Supplementary Figure 6: Scatter plot of principal components 5 and 6
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Supplementary Figure 7: Region plot of PKP4

Supplementary Figure 8: Region plot of DPYD



6

Tables

Supplementary Table 1: Demographic and clinical information on the final 

sample

Cases Controls

N 998 1,545
Sex (female/male) 914 / 84 868 / 677 
Age in years (SD) 29.58 (8.64) 44.19 (13.24)

Comorbidity

Depression 

(yes / no / missing) 666 / 262 / 40 -

Alcohol dependency 

(yes / no / missing) 163/ 781 / 54 -
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Supplementary Table 2: Association results for single markers
Markers are reported with p<1 x10 -5 , and sorted according to chromosomal position . CHR = chromosome, BP = base pair position, A = allele, FRQ = 

frequency, SNP = single  nuc leotide polymorphism, OR = odds ratio, INFO = imputation info score, SE = standard error, GT = genotyped, IM P = 

imputed

CHR SNP BP Gene A1 A2 FRQ cases FRQ controls INFO OR SE P GT

1 rs187785463 98152125 DPYD A G 0.0531 0.0739 0.752 0.4935 0.1572 7.05E-06 IMP

1 rs6683957 98200719 DPYD A G 0.078 0.1128 1.002 0.6117 0.111 9.46E-06 IMP

2 rs57726666 16203326 GACAT3 A G 0.9407 0.9125 0.912 1.8855 0.1341 2.24E-06 IMP

2 rs78068563 16208690 GACAT3 A G 0.9397 0.9127 0.9227 1.8395 0.1324 4.19E-06 IMP

2 rs115689122 52606079 AC087073.1 A T 0.016 0.0054 0.7809 6.1189 0.4062 8.20E-06 IMP

2 rs62127626 52719291 AC139712.4 A C 0.0163 0.0057 0.7744 5.9639 0.3984 7.38E-06 IMP

2 rs150592717 89936117 T C 0.8884 0.869 0.3247 2.2187 0.1796 9.14E-06 IMP

2 rs4664975 159418438 PKP4 A C 0.4677 0.5152 0.8943 0.7399 0.0678 8.77E-06 IMP

2 rs3771608 159419739 PKP4 A C 0.5405 0.4847 0.9831 1.345 0.0646 4.42E-06 IMP

2 rs12052933 159420140 PKP4 A G 0.54 0.4841 0.9852 1.3451 0.0645 4.29E-06 IMP

2 rs10174340 159421412 PKP4 A T 0.54 0.4841 0.9856 1.3451 0.0645 4.27E-06 IMP

2 rs3771609 159422239 PKP4 T C 0.46 0.516 0.9859 0.7434 0.0645 4.25E-06 IMP

2 rs3771610 159422317 PKP4 A G 0.54 0.484 0.9859 1.3451 0.0645 4.25E-06 IMP

2 rs10187426 159425104 PKP4 A G 0.5399 0.4839 0.9869 1.3451 0.0644 4.21E-06 IMP

2 rs7577672 159429019 PKP4 A G 0.4748 0.5324 0.9886 0.7523 0.0643 9.56E-06 IMP

2 rs3771614 159430579 PKP4 T G 0.5318 0.4731 0.9904 1.3443 0.0643 4.26E-06 IMP

2 rs3771616 159430991 PKP4 A G 0.5318 0.4731 0.9903 1.3444 0.0643 4.23E-06 IMP

2 rs3821291 159431031 PKP4 A G 0.5318 0.4731 0.9903 1.3444 0.0643 4.23E-06 IMP
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2 rs12473797 159431663 PKP4 T C 0.5319 0.4732 0.9898 1.3449 0.0644 4.14E-06 IMP

2 rs3755408 159431842 PKP4 T C 0.5318 0.4731 0.9903 1.3445 0.0643 4.21E-06 IMP

2 chr2_159432313_D 159432313 PKP4 I2 D 0.5496 0.4914 0.9516 1.3537 0.0658 4.13E-06 IMP

2 rs2356189 159434500 PKP4 A G 0.5402 0.4839 0.9869 1.3482 0.0644 3.55E-06 IMP

2 rs3755413 159436702 PKP4 A G 0.528 0.4703 0.9825 1.3387 0.0646 6.23E-06 IMP

2 rs3771620 159438129 PKP4 T C 0.4591 0.5157 0.9808 0.7375 0.0647 2.52E-06 IMP

2 rs4664979 159439898 PKP4 T C 0.4597 0.5161 0.9868 0.7414 0.0644 3.44E-06 IMP

2 rs3771627 159443266 PKP4 T C 0.4596 0.5161 0.9865 0.741 0.0645 3.31E-06 IMP

2 rs2108215 159446818 PKP4 T G 0.4674 0.5269 0.9909 0.7404 0.0643 3.01E-06 GT

2 rs11891131 159447509 PKP4 T C 0.532 0.4731 0.9898 1.347 0.0644 3.71E-06 IMP

2 rs1465236 159448238 PKP4 A G 0.4682 0.527 0.9894 0.7424 0.0644 3.71E-06 IMP

2 rs999232 159448306 PKP4 C G 0.468 0.5269 0.9899 0.7422 0.0644 3.62E-06 IMP

2 rs3771631 159448926 PKP4 A C 0.468 0.5269 0.9898 0.7422 0.0644 3.62E-06 IMP

2 rs3771632 159448946 PKP4 C G 0.5341 0.4763 0.9806 1.3485 0.0646 3.75E-06 IMP

2 rs2051946 159454789 PKP4 T G 0.532 0.4732 0.9886 1.3474 0.0644 3.66E-06 IMP

2 rs2051947 159459863 PKP4 A G 0.5321 0.4733 0.9884 1.3472 0.0644 3.71E-06 IMP

2 rs12694965 159460218 PKP4 T C 0.4594 0.5159 0.9836 0.7396 0.0646 3.00E-06 IMP

2 rs10191923 159460807 PKP4 T C 0.5321 0.4735 0.9882 1.3467 0.0644 3.83E-06 IMP

2 rs10191934 159460832 PKP4 T G 0.5322 0.4736 0.9877 1.3461 0.0644 3.97E-06 IMP

2 rs10191939 159460846 PKP4 A T 0.4679 0.5267 0.9885 0.7423 0.0644 3.72E-06 IMP

2 chr2_159465312_I 159465312 PKP4 I5 D 0.4498 0.5053 0.9315 0.7371 0.0663 4.28E-06 IMP

2 rs3771643 159466149 PKP4 T C 0.532 0.4731 0.9889 1.3483 0.0644 3.46E-06 IMP

2 rs3771647 159469420 PKP4 T C 0.5321 0.4735 0.9893 1.3459 0.0644 3.93E-06 IMP

2 rs7607589 159469920 PKP4 T C 0.4594 0.5159 0.9845 0.7404 0.0645 3.18E-06 GT

2 chr2_159476445_D 159476445 PKP4 I13 D 0.5489 0.4908 0.9403 1.3685 0.0661 2.04E-06 IMP
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Table 1: Results of the gene -based analysis using MAGMA: Most significant genes (p<5x10 -4) in 
the gene -based analysis and their chromosomal position. Genes in bold font were significant after 
correction for multiple testing; CHR = chromosome, NSNPS = number of SNPs, NPARAM = number of 
parameters used in the model, ZSTAT: z-value of the gene, P = gene p-value 

GENE CHR START STOP NSNPS NPARAM ZSTAT P
PKP4 2 159303476 159547941 21 13 4,7924 8,24x10-7

DPYD 1 97533299 98396615 105 68 4,7162 1,20x10-6

GRAMD1B 11 123315191 123508478 34 28 3,8856 5,10x10-5

STX8 17 9143788 9489275 38 33 3,7984 7,28x10-5

BMP2 20 6738745 6770910 7 6 3,588 1,67x10-4

TRAF3IP1 2 239219185 239319541 11 8 3,5389 2,01x10-4

ZP3 7 76016841 76081388 9 7 3,5037 2,29x10-4

PINX1 8 10612473 10707394 19 11 3,5034 2,30x10-4

GTF3C4 9 135535728 135575471 4 4 3,4851 2,46x10-4

DNAH1 3 52340335 52444513 11 8 3,4543 2,76x10-4

YKT6 7 44230577 44263893 6 3 3,3841 3,57x10-4

CCSER1 4 91038684 92533370 111 78 3,3804 3,62x10-4

LRRC59 17 48448594 48484914 8 6 3,3716 3,74x10-4

TMEM71 8 133712191 133782914 9 8 3,3668 3,80x10-4

BAP1 3 52425020 52454121 3 3 3,345 4,11x10-4

AQR 15 35138552 35271995 8 6 3,3299 4,34x10-4

FGFR1 8 38258656 38336352 12 10 3,3162 4,56x10-4



1

Table 2: Results of the gene-set analysis: Most significant gene-sets (uncorrected p<0.01) in the 
gene-set analysis with i-GSEA4GWAS v2 are listed. Gene-sets in bold font were significant after 
correction for multiple testing, P-value = gene-set p-value, FDR = false discovery rate 

Gene-set Name Number of genes P-value FDR P-value
GO: EXOCYTOSIS 25 0.001 0.019
GO: RESPONSE TO ORGANIC SUBSTANCE 30 0.002 0.173
GO: BRAIN DEVELOPMENT 51 0.003 0.888
GO: HORMONE METABOLIC PROCESS 30 0.003 0.511
GO: PROTEIN C TERMINUS BINDING 73 0.003 0.536
GO: LYSOSOME 53 0.007 0.785
GO: LYTIC VACUOLE 53 0.007 0.785
GO: MULTI ORGANISM PROCESS 143 0.007 0.920


