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Abstract 

Background: Myopia prevalence has increased in the last 20 years, with many studies linking the increase to 
reduced time spent outdoors. A number of recent observational studies have shown an inverse association 
between vitamin D (25(OH)D) serum levels and myopia. However, in such studies it is difficult to separate the 
effects of time outdoors and vitamin D levels. In this work we use Mendelian randomization (MR) to assess if 
genetically determined 25(OH)D levels contribute to the degree of myopia.  

Methods: We performed MR using results from a meta-analysis of refractive error (RE) genome-wide 
association study (GWAS) that included 37,382 and 8,376 adult participants of European and Asian ancestry 
respectively, published by the Consortium for Refractive Error And Myopia (CREAM) consortium. We used 
single nucleotide polymorphisms (SNPs) in the DHCR7, CYP2R1, GC and CYP24A1 genes with known effects on 
25(OH)D concentration as instrumental variables (IV). We estimated the effect of 25(OH)D on myopia level 
using a Wald-type ratio estimator based on the effect estimates from the CREAM GWAS.  

Results: Using the combined effect attributed to the 4 SNPs, the estimate for the effect of 25(OH)D on 
refractive error was -0.02 (95% CI  -0.09, 0.04) diopters (D) per 10 nmol/L increase in 25(OH)D concentration in 
Caucasians and 0.01 (95% CI  -0.17, 0.19) D per 10 nmol/L increase in Asians.  

Conclusions: The tight confidence intervals on our estimates suggest the true contribution of vitamin D levels 
to degree of myopia is very small and indistinguishable from zero. Previous findings from observational studies 
linking vitamin D levels to myopia were likely attributable to the effects of confounding by time spent 
outdoors. 

Key messages 

Multiple observational studies have shown an inverse association between 25(OH)D level and the degree of 

myopia. 

Results from this study suggest that vitamin D is not causally related to the degree of myopia. 

Association estimates in observational studies are likely to be confounded by time spent outdoors.  

Word count: 5369  
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Introduction 

Myopia is the most common type of refractive error (RE). Its prevalence has notably increased worldwide in the 

past two decades, particularly in East Asian populations 1, 2.  Despite many international efforts, because of its 

complex nature the causes of myopia are not yet well understood 3, 4. Numerous studies 5-11 have found that 

time spent outdoors is inversely associated with myopia development and a number of mechanisms have been 

proposed to explain this potential protective effect. One hypothesis is that time spent outdoors translates into 

less time performing near work activities, which may promote eye elongation as a compensatory mechanism to 

accommodation-induced defocus 12-14. However, some studies have shown that the effect of time outdoors in 

the development of myopia is independent of the effect of near work activities 15-17. Another hypothesis suggests 

that bright light enhances retinal dopamine release, which may suppress axial elongation 18, 19. More recently, 

some studies have proposed that higher vitamin D level (measured as the concentration of 25(OH)D) in serum 

or plasma reduces the risk of myopia20-23. However, studies from the British Avon Longitudinal Study of Parents 

and Children (ALSPAC) and the European Eye Study found no evidence of an independent association between 

25(OH)D levels and myopia19, 24, 25. . The null findings from this large study suggest that the previously 

documented association between serum 25(OH)D level and myopia was potentially confounded by time spent 

outdoors and/or the degree of sun exposure.   

In this work we aimed to clarify the role of 25(OH)D levels on myopia development. To this end, we carried out 

a Mendelian randomization (MR) analysis. MR is an approach used to test and estimate the causal effect 

between an exposure and an outcome26. The approach has been used to examine the link between 25(OH)D 

levels and other complex diseases 27-29. MR uses an instrumental variable (IV) built from genetic variants with 

known effect on the risk factor, to make a causal inference. This approach is considered to be equivalent to a 

“natural” randomized controlled trial (RCT), as genotypes are segregated randomly from parent to offspring. 

Because of this random transmission of alleles, the genotypes are not related to any of the factors (e.g. sex, 

age, or environmental factors such as time outdoors), that commonly confound associations in traditional 

epidemiological studies30.  Here, we used genetic variants that are known to affect 25(OH)D concentrations as 

an IV to evaluate the relationship between 25(OH)D  levels and myopia (measured by RE).   

Methods 
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Instrumental variables 

As IVs we used SNPs in DHCR7 (rs12785878 and rs7944926), CYP2R1 (rs10741657 and rs12794714), CYP24A1 

(rs6013897) and GC (rs2282679) which have been consistently reported to influence 25(OH)D levels 27, 28, 31-33. 

We used these variants in preference to others in the same genes since these are in linkage disequilibrium (LD) 

and we can use their estimated effects on vitamin D concentrations reported in Afzal et al. (rs7944926,  

rs12794714) from 30 792 individuals of Danish descent27, and Mokry et al. (rs12785878,  rs10741657, 

rs6013897 and rs2282679) from 2 347 individuals of European descent28. Nevertheless, in Supplementary 

Table 1 we show the association between RE and genotype for other SNPs in all 4 genes (DHCR7, CYP2R1 and 

GC and CYP24A1). 

Beta coefficients and standard errors quantifying the association between RE and genotype for the SNPs of 

interest were obtained from a published genome-wide association study (GWAS) meta-analysis from the 

Consortium for Refractive Error and Myopia (CREAM). Full details of this meta-analysis are described 

elsewhere34. In brief, the meta-analysis included 37,382 of European ancestry from 27 studies and 8,376 Asian 

participants from 5 studies.  All participants were aged 25 or older; mean age and RE (measured as spherical 

equivalent) in the European ancestry population were 55.7 (s.d.=12.3) and -0.1 (s.d.=0.76) respectively and in 

the Asian ancestry population 55.8 (s.d.=5.54) and -0.34 (s.d.=1.52). Descriptions of each study cohort included 

in the CREAM GWAS are in Supplementary Table 2. In our association analysis we regressed RE on each SNP of 

interest, with age, sex and principal components included as covariates (number of principal components 

included varied between studies). LD-score regression analysis35 found little evidence of population 

stratification (LD-score intercept = 1.04). Each of the relevant SNPs was present in 25 or more of the European 

ancestry studies and in all the Asian studies. Measurements of 25(OH)D level, vitamin D supplementation and 

of outdoor behavior were not available on most participants. Not having direct 25(OH)D measurements 

available is not a limitation because we intentionally used genetically determined 25(OH)D levels. Whilst being 

able to correct for confounding factors such as outdoor behavior would slightly reduce the confidence 

intervals on our estimates, not having this information is not of major importance in our MR analysis because, 

subject to the MR assumptions (discussed below), any confounders (such as time spent outdoors) are 

randomized with respect to genetically predicted 25(OH)D levels. 
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Due to hyperopic shifts in older individuals, and to be able to better compare our results to those from Yazar et 

al 20, we also performed this analysis using data from three younger cohorts: the Brisbane Adolescent Twin 

Study (BATS), the Twin Eye Study in Tasmania (TEST) and ALSPAC. We included 3,732 individuals from the BATS 

and TEST cohorts (mean age=16.90) and 3,791 individuals from ALSPAC whose RE was measured at age 15. 

Details of the genotyping and phenotyping procedures are detailed elsewhere for ALSPAC19, 36, BATS37 and 

TEST38.  

In order to test the MR assumptions (described in the next section), we used individual level data from 

TwinsUK cohort. The TwinsUK adult twin registry, based at St. Thomas' Hospital in London, comprises over 

12,000 predominantly female European ancestry twins, from throughout the United Kingdom39. Twins who 

volunteered were largely unaware of the eye studies at the time of enrolment and gave fully informed consent 

under a protocol reviewed by the local research ethics committee (EC04/015), in accordance with the Helsinki 

Declaration. Non-cycloplegic measures of refraction were used and the mean of the two eyes was considered. 

Other phenotypes were not necessarily measured at the same time as RE. The concentration of 25(OH)D was 

measured in serum (units= nmol/L). Smoking status (never=0, ex-smoker=1, current smoker=2), years of 

education, and vitamin D supplementation were assessed through questionnaire. Body mass index (BMI) was 

measured during clinical assessment. Socioeconomic status was graded from 1 to 5 using the Index of Multiple 

Deprivation score, which is based on the individual’s place of residence in the UK. Genotyping was carried out 

using two genotyping platforms: the HumanHap300k-Duo for part of the TwinsUK Cohort and the 

HumanHap610‐Quad for the rest of the TwinsUK Cohort. Imputation was conducted with reference to 

HapMap 2 CEU population using IMPUTE2. Only 484 individuals from the TwinsUK cohort had all the relevant 

variables.  

Statistical analysis  

Afzal et al.27 reported precise effect estimates for rs7944926 in DHCR7 and  rs12794714 in CYP2R1 showing 

that each SNP is estimated to reduce the concentrations of 25(OH)D by 2-3 nmol/L per risk allele and explain 

between 0.3% and 0.6% of the total variance in 25(OH)D concentrations.  Similarly Mokry et al.28 reported 

effect estimates of rs10741657 in CYP2R1, rs12785878 in DHCR7, rs2282679 in GC and rs6013897 in CYP24A1  

on  natural-log-transformed  25(OH)D level. In order to make the effect sizes comparable to those reported by 
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Afzal et al, we transformed the effect estimates from natural logarithm to the natural scale using an intercept 

at e4 (~54.59) nmol/L of 25(OH)D 29. Based on these effect parameters and those from the myopia GWAS 

meta-analysis, we estimated the effect of 25(OH)D on RE using a Wald-type ratio estimator30. The standard 

error from this ratio estimate was approximated using the delta method40. We present separately the 

estimated effect of 25(OH)D on RE using 1) the variants with effect estimates extracted from Afzal et al and 2) 

the four variants used in Mokry et al.  

Where possible, we tested the three fundamental MR assumptions to ensure the validity of the IV 26, 30: 1) the 

IV must be strongly associated with the exposure variable; 2) the IV is not associated with potential 

confounders; 3) the IV is only associated with  the outcome variable (RE) via the exposure (25(OH)D levels) 

[Figure 1]. For assumption 1, there is very strong evidence that the 4 SNPs we selected are robustly associated 

with 25(OH)D levels27, 31, 32. Additionally, in the TwinsUK Study, where individual data were available, we 

showed a clearer association between an allele score containing these 4 SNPs and the 25(OH)D level. To test 

assumption 2, we performed a series of linear regressions between the aggregated allele score and smoking, 

BMI, education and socioeconomic status.  Assumption 3 is difficult to test directly – however, the SNPs 

chosen play clear roles in vitamin D synthesis in the skin and metabolism in the liver yet have no obvious 

biological link to the development of RE other than through vitamin D.  

Results 

Based on the effects of the SNPs in DHCR7, CYP2R1, GC and CYP24A1  on 25(OH)D concentrations27, 28 and their 

effects reported in the CREAM GWAS of RE in adults aged over 25 (N= 37,382 for Europeans and N= 8,376 from 

Asians) 34, the association between 25(OH)D concentration and RE was not statistically significantly different 

from 0 (i.e. the estimates for Europeans βiv varied from -0.09 to 0.06 diopters (D) per 10 nmol/L and from -0.09 

to 0.22 for Asians and confidence intervals overlapped with 0) [Table 1]. Likewise, the estimates based on the 

effects of the SNPs in RE in three younger cohorts of European descent (TEST, BATS and ALSPAC (N= 7,523), 

mean age ~16) ranged from -0.12 to 0.19 with wider standard errors [Table 1]. 

Given that each of the SNPs explain just a small fraction of the variance in 25(OH)D levels (0.3%-0.6%), we 

investigated if their aggregated effect had an effect on RE. We computed an inverse-variance weighted 

estimate of the effect combining the ratio estimate of rs7944826 and rs12794714 based on effects on vitamin 
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D from Afzal et al. and obtained estimates of �̂�𝑖𝑣𝑤=0.05 ± 0.05 (P>0.05) for Europeans, �̂�𝑖𝑣𝑤=-0.05 ± 0.06 (P > 

0.05) for the young Europeans, and �̂�𝑖𝑣𝑤=-0.06 ± 0.12 (P>0.05) for Asians [Figure 2]. Similarly, based on the 

effects for rs10741657, rs12785878, rs2282679 and rs6013897 from Mokry et al. we obtained estimates of 

�̂�𝑖𝑣𝑤=-0.02 ± 0.03 (P>0.05) for Europeans, �̂�𝑖𝑣𝑤=0.03 ± 0.05 (P > 0.05) for the young Europeans, and �̂�𝑖𝑣𝑤=0.01 

± 0.09 (P>0.05) for Asians [Figure 3]. Given that the DHCR7 locus has been shown to be influenced by 

population stratification41 and that the SNP in CYP24A1 may be regarded as a weak instrument, we estimated 

the causal effect by excluding each or both of these loci from the analysis as a robustness check. These yielded 

similar estimates with confidence intervals overlapping with 0 [Supplementary Figures 1-3].  

Using individual level data from the TwinsUK study (N=484) (individual level data were not available within the 

wider CREAM study) we tested the MR assumptions [Figure 1]. Table 2 shows the effect estimates and partial 

correlations between the relevant SNPs and 25(OH)D level, including age, sex, vitamin D supplementation, 

smoking, BMI, education and socioeconomic status as covariates. Overall, the SNPs were clearly associated 

with 25(OH)D concentrations with the exception of rs6013897; the strongest association was observed for 

rs10741657 (R2=2.13%; P=1.2x10-3). The SNPs were not associated with any of the potential confounders (i.e. 

BMI, smoking, socioeconomic status and vitamin D supplementation). Multivariable linear regression showed 

no statistically significant association between 25(OH)D levels and RE (βvitD=0.03 ± 0.03; P=0.35)  – however, 

this estimate was not statistically significantly different from Yazar et al. (Pdiff=0.28). As expected, education 

was negatively associated with RE (P=0.001). Socioeconomic status, vitamin D supplementation, smoking and 

BMI were not associated with RE (P>0.05).  

We assessed the possibility of pleiotropy further by examining GWAS summary statistics of BMI42, smoking43 

and education44 from very large samples. We found that none of the SNPs were associated to these traits after 

correcting by 4 tests (4 loci) [Supplementary Table 3]. 

Discussion 

In this work, we presented an MR study assessing the relationship between 25(OH)D levels and RE. Our results 

showed no evidence of an association between genetically determined 25(OH)D levels and degree of RE. 

However, as it is difficult to prove that an exposure has no effect at all (e.g. the effect is too small to be 
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detected), we show that if it exists it is likely to be in the range of �̂�𝑖𝑣𝑤=-0.02 (95% CI -0.09, 0.04) diopters (D) 

per 10 nmol/L increase in 25(OH)D concentrations in older Europeans,  �̂�𝑖𝑣𝑤=0.01 (95% CI -0.17, 0.19) in 

younger Europeans and �̂�𝑖𝑣𝑤=0.03 (95% CI -0.07, 0.12) D per 10 nmol/L increase in Asians. These results 

suggest that the association observed in previous studies 20-23 is likely confounded by residual effects of 

increased time outdoors. 

A study from Choi et al21 involving 2038 adolescents from South Korea showed a statistically significant 

association between 25(OH)D concentrations and RE; however, time spent outdoors was not entirely 

accounted for (i.e. physical exercise and area of residence were investigated but not outdoor time). A 

subsequent study20 involving young adults from Western Australia also reported that participants with low 

25(OH)D3 levels were more likely to be myopic even after accounting for the effect of time spent outdoors and 

conjunctival UV autofluorescence20; nonetheless, 25(OH)D3 concentration is particularly affected by the 

amount of sun exposure, and given that time outdoors is hard to measure accurately it is possible that there 

was residual confounding (i.e. in observational studies even if correction is made for confounders, confounding 

may remain if the confounders are inaccurately measured). More recently, another study involving 2666 

children (mean age = 6.12) found that low 25(OH)D level  was associated with longer axial length and increased 

myopia risk. This association, although it remained statistically significant, was attenuated once time outdoors 

was fit into the model23. However, two larger studies failed to show an independent association between 

25(OH)D and myopia. A study of 3677 participants from ALSPAC 19, 24, found no independent association 

between incident myopia and either 25(OH)D2 (derived from fortified foods and vitamin supplements) or  

25(OH)D3, after adjusting for time outdoors and year and season of blood sample collection. Similarly, the 

European Eye Study found no independent association between 25(OH)D3 and degree of myopia25.   

Whether 25(OH)D concentrations cause myopia could be investigated via a RCT. However, this is costly and 

not always feasible. Instead, here we use MR, which is considered as a natural “RCT” in up to 34,000 

individuals to test whether vitamin D has a role in RE. A strength of MR is that it allow us to measure 

differences in life-time exposure, while an RCT just describes the effect during the time of the study. Since we 

demonstrate no relationship over the lifetime, it is unlikely that an RCT over a shorter period would draw 

different conclusions (for this to happen, an unlikely series of events is required e.g. the effect of vitamin D 

increases cause X units increase in myopia for ages 5-9, followed by the effect of vitamin D increases causing 
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exactly X units decrease in myopia for some later time period, such that over the lifetime any causal events 

exactly cancel out). 

One of the strengths of our study is that the genetic variants we used are a robust proxy for 25(OH)D levels 

and have well understood roles in the vitamin D synthesis and metabolic pathway. Although these SNPs have a 

small effect on 25(OH)D levels, the underlying principle with instrumental variable analysis is that one 

intentionally carves out a small component of the overall trait variation that is not affected by confounding.  

Providing that the overall sample size of individuals with genotype and myopia data available is high, our 

overall power will be high, even when the effect of each SNP on 25(OH)D  is small. Instrumental variable 

estimates in our first analysis took advantage of the large samples sizes (37,382 Europeans and 8,376 Asians) 

of the CREAM GWAS meta-analyses and an extra sample of 7,523 young Europeans allowing us to estimate 

effect sizes with tight confidence intervals. These confidence intervals are evidence that our study is well 

powered to detect very small effects45.  

To the maximum extent possible, we have tested the MR assumptions using individual level data from the 

TwinsUK study and publicly available GWAS summary statistics and followed the MR reporting checklist46. We 

found no evidence for the SNPs we used being associated with measured confounding variables.  In the 

unlikely event there is confounding due to 25(OH)D associated SNPs being associated with an unmeasured 

confounding variable (MR assumption 2), for us to reach the conclusion we did (zero effect), there would have 

to be a true effect of 25(OH)D levels on RE which was exactly cancelled out by a confounding variable acting in 

the opposite direction and of the same magnitude 47. Nevertheless, a number of limitations must be 

acknowledged. In the first part of our analysis, we did not have the actual effect estimates of the relevant 

genetic variants on the 25(OH)D levels of CREAM participants. Instead, the effects were computed using an 

approximation based on the effects estimated by Afzal et al27 and Mokry et al28. It must be noted that any 

inaccuracy in estimates of the effect of each SNP may have caused a variation in the magnitude of our MR 

estimates. However our conclusions regarding the significance of the effect remain valid providing that the 

SNPs for 25(OH)D level constitute a strong instrument (i.e. if the SNPs are unambiguously associated with 

25(OH)D level). Although the estimates of the effect size for each of our SNPs on 25(OH)D levels vary across 

different published studies (across different ancestries), the SNPs are clearly statistically significantly 

associated with 25(OH)D level, with the main determinant of the variation in effect size estimates being the 



10 
 

small sample size in most studies (compared to the highly precise estimates from the 30,792 individuals in 

Afzal et al27). Another limitation is that it is not possible to completely rule out a very small but genuine effect 

of 25(OH)D level on myopia, particularly in the case of the Asian ancestry group or the young European 

ancestry group.  

In addition to the 3 primary MR assumptions listed above, an additional MR assumption is required if one 

wishes to compute a specific estimate for the effect of a risk factor (vitamin D levels) on an outcome (degree of 

myopia); this assumption states that the effect of the risk factor on the outcome is linear. Whilst this may not 

be strictly true, especially in the case of very large or very small 25(OH)D values, our results would not change 

materially because differences in scaling would still result in very small estimates for the effect of 25(OH)D 

level on degree of myopia. 

In conclusion, our MR estimates do not support a direct involvement of vitamin D with myopic RE as 

individuals genetically predisposed to lower 25(OH)D levels were not more myopic than expected. In contrast 

to observational studies, our estimates are very unlikely to be confounded by time outdoors, which is a 

consideration of substantial importance given the relation of time outdoors with myopic RE and 25(OH)D 

levels. 
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Table 1. Effect estimates (β) and standard errors (SE) of the instrumental variables (SNPs) on 25(OH)D concentrations and refractive error (RE). βzx refers to the effect of the 

SNP on 25(OH)D and βzy refers to the effect on REand βiv shows the causal effect estimates (diopters (D) per 10 nmol/L 25(OH)D increase).  

   Effect on 25(OH)D  

(10 nmol / L)* 

RE Europeans N=37,382a RE Europeans young cohorts 

N=7,523b 

RE Asians N=8,376a 

SNP (gene)  EA/ 

NEA 

βzx SEzx R2 βzy SEzy βiv SEiv βzy SEzy βiv SEiv βzy SEzy βiv SEiv 

Based on SNPs used in Afzal et al27 

rs7944926 (DHCR7) A/G -0.20 0.019 0.4% -0.011 0.018 0.06 0.09 -0.038 0.025 0.19 0.13 0.020 0.042 -0.1 0.21 

                 

rs12794714 (CYP2R1) A/G -0.30 0.022 0.6% -0.015 0.016 0.05 0.05 0.036 0.021 -0.12 0.07 0.015 0.042 -0.05 0.14 

Combined - - - 1% - - 0.05 0.05 - - -0.05 0.06 - - -0.06 0.12 

Based on SNPs used in Mokry et al28 

rs10741657 (CYP2R1) C/T -0.28 0.07 0.6% 0.007 0.017 -0.02 0.06 0.034 0.021 -0.12 0.08 0.024 0.050 -0.09 0.18 

rs12785878 (DHCR7) G/T -0.31 0.07 0.6% -0.009 0.019 0.03 0.06 -0.035 0.028 0.12 0.09 0.025 0.042 -0.08 0.14 

rs2282679 (GC) C/A -0.26 0.07 0.5% 0.021 0.018 -0.09 0.07 -0.044 0.023 0.17 0.09 -0.038 0.039 0.15 0.15 

rs6013897 (CYP24A1) A/T -0.15 0.08 0.1% 0.012 0.020 -0.08 0.13 0.008 0.027 -0.05 0.19 -0.032 0.042 0.22 0.29 

Combined - - - 1.8% - - -0.02 0.03 - - 0.03 0.05 - - 0.01 0.09 

 

*Effect estimates were extracted from Azfal et al27 or Mokry et al28 respectively. Standard errors and R2 estimates based on Mokry et al were computed from the reported 

F-statistics. 
a Effect estimates are based on those from the large RE GWAS meta-analysis from CREAM34. 
b Effect estimates were computed using data from young individuals from the TEST, BATS and ALSPAC cohorts (mean age 16). 

EA/NEA: Effect allele / Non-effect allele 
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Table 2. Association between the IVs and 25(OH)D concentrations after adjusting for potential confounders* in 

the TwinsUK cohort.  

  TwinsUK (N=484) 25(OH)D 

SNP (IV) βzx SEzx R2 

rs11234027 A/G -6.35 3.46 0.70% 

rs7944926 A/G -3.81 2.85 0.40% 

rs10741657 C/T -8.47 2.59 2.10% 

rs12794714 A/G -5.4 2.49 0.90% 

rs2282679 C/A -3.72 1.38 0.36% 

rs6013897 A/T -1.79 1.59 0.02% 

* Vitamin D supplementation, sex, age, smoking, BMI, education and socioeconomic status.  
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Figure 1. Mendelian randomization assumptions. 1) SNPs (instrumental variable) are robustly associated with 

25(OH)D concentrations (exposure variable); 2) SNPs are not associated with the confounders; 3) The SNPs are 

associated to refractive error (outcome variable) through their effect on 25(OH)D concentrations. 
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Figure 2. Causal effect estimates based on SNPs (IVs) and parameters extracted from Afzal et al. 
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Figure 3. Causal effect estimates based on SNPs (IVs) and parameters extracted from Mokry et al. 

 

 

 


