This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/99991/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: http://dx.doi.org/10.1038/ncomms14774
(http://dx.doi.org/10.1038/ncomms14774)

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; \(P = 1 \times 10^{-4} \)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (\(P = 8.4 \times 10^{-7} \)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition characterized by progressive loss of upper and lower motor neurons, leading to death from respiratory failure in 70% of patients within 3 years of symptom onset. Although ALS is often described as a primarily motor-system disease, extramotor involvement occurs in up to 50% of cases, with prominent executive and behavioural impairment, and behavioural variant frontotemporal dementia (FTD) in up to 14% of cases.1 A neuropsychiatric prodrome has been described in some people with ALS–FTD, and higher rates of schizophrenia and suicide have been reported in first and second degree relatives of those with ALS, particularly in kindreds associated with the C9orf72 hexanucleotide repeat expansion.2 These clinical and epidemiological observations suggest that ALS and schizophrenia may share heritability. ALS and schizophrenia both have high heritability estimates (0.65 and 0.64, respectively)3,4; however the underlying genetic architectures of these heritable components appear to differ. Analysis of large genome-wide association study (GWAS) datasets has implicated over 100 independent risk loci for schizophrenia5 and estimated that a substantial proportion (23%) of the variance in underlying liability for schizophrenia is due to additive polygenic risk (many risk-increasing alleles of low individual effect combining to cause disease) conferred by common genetic variants6. This proportion, the single nucleotide polymorphism (SNP)-based heritability, is lower in ALS (8.2%), in which fewer than ten risk loci have been identified by GWAS.7 Nevertheless, both diseases have polygenic components, but the extent to which they overlap has not been investigated. Recently, methods to investigate overlap between polygenic traits using GWAS data have been developed8–10. These methods assess either pleiotropy (identical genetic variants influencing both traits) or genetic correlation (identical alleles influencing both traits). Genetic correlation is related to heritability; for both measures, binary traits such as ALS and schizophrenia are typically modelled as extremes of an underlying continuous scale of liability to develop the trait. If two binary traits are genetically correlated, their liabilities covary, and this covariance is determined by both traits having identical risk alleles at overlapping risk loci. Studies of pleiotropy and genetic correlation have provided insights into the overlapping genetics of numerous traits and disorders, although none to date has implicated shared polygenic risk between neurodegenerative and neuropsychiatric disease. Here, we apply several techniques to identify and dissect the polygenic overlap between neurodegenerative and neuropsychiatric disease. Here, we supported the positive genetic correlation between ALS and schizophrenia by analysis of GWAS test statistic13. This distinguishes confounding from polygenicity in GWAS inflation and the regression coefficient can be used to estimate the SNP-based heritability (h_s^2) for single traits13. In the bivariate case, the regression coefficient estimates genetic covariance (r_g) for pairs of traits, from which genetic correlation (r_e) is estimated13; these estimates are unaffected by sample overlap between traits. Using constrained intercept LD score regression with mixed linear model ALS summary statistics, we estimated the liability-scale SNP-based heritability of ALS to be 8.2% (95% confidence interval = 7.2–9.1; mean $\chi^2 = 1.13$; all ranges reported below indicate 95% confidence intervals), replicating previous estimates based on alternative methods.7 Estimates based on ALS meta-analysis summary statistics and free-intercept LD score regression with mixed linear model summary statistics were lower (Supplementary Table 1), resulting in higher genetic correlation estimates (Supplementary Table 2); for this reason, we conservatively use constrained intercept genetic correlation estimates for ALS mixed linear model summary statistics throughout the remainder of this paper. Heritability estimates for permuted ALS data were null (Supplementary Table 1).

Results

Genetic correlation between ALS and schizophrenia. To investigate the polygenic overlap between ALS and schizophrenia, we used individual-level and summary data from GWAS for ALS5 (36,052 individuals) and schizophrenia5 (79,845 individuals). At least 5,582 control individuals were common to both datasets, but for some cohorts included in the schizophrenia dataset this could not be ascertained so this number is likely to be higher. For ALS, we used summary data from both mixed linear model association testing11 and meta-analysis of cohort-level logistic regression12. We first used linkage disequilibrium (LD) score regression with ALS and schizophrenia summary statistics; this technique models, for polygenic traits, a linear relationship between a SNP’s LD score (the amount of genetic variation that it captures) and its genotype, and its effect on disease liability.14,15 Error bars indicating 95% confidence intervals and P-values were calculated by the LD score regression software using a block jackknife procedure. Secondary traits are: AD, Alzheimer’s disease; ADHD, attention deficit-hyperactivity disorder; ASD, autism spectrum disorder; BPD, bipolar disorder; MDD, major depressive disorder; MS, multiple sclerosis; SCZ, schizophrenia.

Polygenic risk score analysis. We supported the positive genetic correlation between ALS and schizophrenia by analysis of genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; $P = 1 \times 10^{-8}$). Results were similar for a smaller schizophrenia cohort of European ancestry (21,856 individuals)14, indicating that the inclusion of individuals of Asian ancestry in the schizophrenia cohort did not bias this result (Supplementary Fig. 1). In addition to schizophrenia, we estimated genetic correlation with ALS using GWAS summary statistics for bipolar disorder15, major depressive disorder16, attention deficit-hyperactivity disorder17, autism spectrum disorder17, Alzheimer’s disease (Supplementary Note 1)18, multiple sclerosis19 and adult height20, finding no significant genetic correlation between ALS and any secondary trait other than schizophrenia (Fig. 1; Supplementary Table 2).

![Figure 1 | Genetic correlation between ALS and schizophrenia](https://www.nature.com/)**Figure 1 | Genetic correlation between ALS and schizophrenia.**
polygenic risk for schizophrenia in the ALS cohort. Polygenic risk scores (PRS) are per-individual scores based on the sum of alleles associated with one phenotype, weighted by their effect size, measured in an independent target sample of the same or a different phenotype\(^{10}\). PRS calculated on schizophrenia GWAS summary statistics for twelve \(P\)-value thresholds (\(P_\text{T}\)) explained up to 0.12% (\(P_\text{T} = 0.2, P = 8.4 \times 10^{-7}\)) of the phenotypic variance in a subset of the individual-level ALS genotype data that had all individuals removed that were known or suspected to be present in the schizophrenia cohort (Fig. 2; Supplementary Table 5). ALS cases had on average higher PRS for schizophrenia compared to healthy controls and harbouring a high schizophrenia PRS for \(P_\text{T} = 0.2\) significantly increased the odds of being an ALS patient in our cohort (Fig. 3; Supplementary Table 6). Permutation of case–control labels reduced the explained variance to values near zero (Supplementary Fig. 3).

Modelling misdiagnosis and comorbidity. Using BUHMBOX\(^{21}\), a tool that distinguishes true genetic relationships between diseases (pleiotropy) from spurious relationships resulting from heterogeneous mixing of disease cohorts, we determined that misdiagnosed cases in the schizophrenia cohort (for example, young-onset FTD–ALS) did not drive the genetic correlation estimate between ALS and schizophrenia (\(P = 0.94\)). Assuming a true genetic correlation of 0%, we estimated the required rate of misdiagnosis of ALS as schizophrenia to be 4.86% (2.47–7.13) to account for LD (Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are provided in Supplementary Table 5. **Figure 2 | Analysis of PRS for schizophrenia in a target sample of 10,032 ALS cases and 16,627 healthy controls.** \(P\)-value thresholds (\(P_\text{T}\)) for schizophrenia SNPs are shown on the \(x\) axis, where the number of SNPs increases with a more lenient \(P_\text{T}\). Explained variances (Nagelkerke \(R^2\), shown as a %) of a generalized linear model including schizophrenia-based PRS versus a baseline model without polygenic scores (blue bars) are shown for each \(P_\text{T}\). – Log\(_{10}\) \(P\)-values of \(\Delta\) explained variance per \(P_\text{T}\) (red dots) represent \(P\)-values from the binomial logistic regression of ALS phenotype on PRS, accounting for LD (Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are provided in Supplementary Table 5.

Figure 3 | Odds ratio for ALS by PRS deciles for schizophrenia. The figure applies to schizophrenia \(P\)-value threshold (\(P_\text{T}\)) = 0.2. The PRS for this threshold were converted to ten deciles containing near identical numbers of individuals. Decile 1 contained the lowest scores and decile 10 contained the highest scores, where decile 1 was the reference and deciles 2-10 were dummy variables to contrast to decile 1 for OR calculation. The case:control ratio per decile is indicated with grey bars. Error bars indicate 95% confidence intervals. Significant differences from decile 1 were determined by logistic regression of ALS phenotype on PRS decile, including sex and principal components as covariates and are indicated by *\(P<0.05\) or ***\(P<0.001\).
Pleiotropic risk loci. We leveraged the genetic correlation between ALS and schizophrenia to discover novel ALS-associated genomic loci by conditional false discovery rate (cFDR) analysis\(^9,22\) (Fig. 4; Supplementary Table 8). Five loci already known to be involved in ALS were identified (corresponding to \(\text{MOBP, C9orf72, TBK1, SARM1 and UNC13A}\)) along with five potential novel loci at cFDR \(<0.01\) (\(\text{CNTN6, TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1}\)). No gene set was significantly enriched (after Bonferroni correction) in genome-wide cFDR values when analysed using MAGENTA.

Discussion

There is evolving clinical, epidemiological and biological evidence for an association between ALS and psychotic illness, particularly schizophrenia. Genetic evidence of overlap to date has been based primarily on individual genes showing Mendelian inheritance, in particular the \(\text{C9orf72}\) hexanucleotide repeat expansion, which is associated with ALS and FTD, and with psychosis in relatives of ALS patients\(^2\). In this study, we have replicated SNP-based heritability estimates for ALS and schizophrenia using GWAS summary statistics, and have for the first time demonstrated significant overlap between the polygenic components of both diseases, estimating the genetic correlation to be 14.3%. We have carefully controlled for confounding bias, including population stratification and shared control samples, and have shown through analysis of polygenic risk scores that the overlapping polygenic risk applies to SNPs that are modestly associated with both diseases. Given that our genetic correlation estimate relates to the polygenic components of ALS (\(h^2 = 8.2\%\)) and schizophrenia (\(h^2 = 23\%\)) and these estimates do not represent all heritability for both diseases, the accuracy of using schizophrenia-based PRS to predict ALS status in any patient is expected to be low (Nagelkerke’s \(R^2 = 0.12\%\) for \(P_3 = 0.2\)), although statistically significant (\(P = 8.4 \times 10^{-7}\)). Nevertheless, the positive genetic correlation of 14.3% indicates that the direction of effect of risk-increasing and protective alleles is consistently aligned between ALS and schizophrenia, suggesting convergent biological mechanisms between the two diseases.

Although phenotypically heterogeneous, both ALS and schizophrenia are clinically recognizable as syndromes\(^23,24\). The common biological mechanisms underlying the association between the two conditions are not well understood, but are likely associated with disruption of cortical networks. Schizophrenia is a polygenic neurodevelopmental disorder characterized by a combination of positive symptoms (hallucinations and delusions), negative symptoms (diminished motivation, blunted affect, reduction in spontaneous speech and poor social functioning) and impairment over a broad range of cognitive abilities\(^25\). ALS is a late onset complex genetic disease characterized by a predominantly motor phenotype with recently recognized extra-motor features in 50% of patients, including cognitive impairment\(^1\). It has been suggested that the functional effects of risk genes in schizophrenia converge by modulating synaptic plasticity, and influencing the development and stabilization of cortical microcircuitry\(^9\). In this context, our identification of \(\text{CNTN6}\) (contactin 6, also known as NB-3, a neural adhesion protein important in axon development\(^26\)) as a novel pleiotropy-informed ALS-associated locus supports neural network dysregulation as a potential convergent mechanism of disease in ALS and schizophrenia.

No significantly enriched biological pathway or ontological term was identified within genome-wide cFDR values using MAGENTA. Low inflation in ALS GWAS statistics, coupled with a rare variant genetic architecture\(^7\), render enrichment-based biological pathway analyses with current sample sizes challenging. Nevertheless, nine further loci were associated with ALS risk at cFDR \(<0.01\). Of these, \(\text{MOBP, C9orf72, TBK1, SARM1 and UNC13A}\) have been described previously in ALS and were associated by cFDR analysis in this study owing to their strong association with ALS through GWAS\(^7\). The remaining four loci (\(\text{TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1}\)) are novel associations and may represent pleiotropic disease loci. \(\text{TNIP1}\) encodes TNFAIP3 interacting protein 1 and is involved in autoimmunity and tissue homoeostasis\(^27\). The protein product of \(\text{PPP2R2D}\) is a regulatory subunit of protein phosphatase 2 and has a role in PI3K-Akt signalling and mitosis\(^28\). \(\text{NCKAP5L}\) is a homologue of \(\text{NCKAP5}\), encoding NAP5, a proline-rich protein that has previously been implicated in schizophrenia, bipolar disorder and autism\(^29,30\). \(\text{ZNF295-AS1}\) is a noncoding RNA\(^31\). Further investigation into the biological roles of these genes may yield novel insight into the pathophysiology of certain subtypes of ALS and schizophrenia, and as whole-genome and exome datasets become available in the future for appropriately large ALS case–control cohorts, testing for burden of rare genetic variation across these genes will be particularly instructive, especially given the role that rare variants appear to play in the pathophysiology of ALS\(^7\).

![Figure 4](https://example.com/figure4.png)
Our data suggest that other neuropsychiatric conditions (bipolar disorder, autism and major depression) do not share polygenic risk with ALS. This finding contrasts with our recent observations from family aggregation studies and may be unexpected given the extensive genetic correlation between neuropsychiatric conditions. This could relate to statistical power conferred by secondary phenotype cohort sizes, and future studies with larger sample sizes will shed further light on the relationship between ALS and neuropsychiatric disease. It is also possible that the current study underestimates genetic correlations due to the substantial role that rare variants play in schizophrenia. It is also possible that the current study underestimates genetic correlations due to the substantial role that rare variants play in schizophrenia. This is unlikely, as strict diagnostic criteria are required for inclusion of samples in the schizophrenia GWAS dataset. Furthermore, since core schizophrenia symptoms are usually diagnosed during late adolescence, a misdiagnosis of FTD-onset ALS–FTD as schizophrenia is unlikely. In this study, we found no evidence for misdiagnosis of ALS as schizophrenia (BUHMBOX P = 0.94) and we estimated that a misdiagnosis of 4.86% of ALS cases would be required to spuriously observe a genetic correlation of 14.3%, which is not likely to occur in clinical practice. We are therefore confident that this genetic correlation estimate reflects a genuine polygenic overlap between the two diseases and is not a feature of cohort ascertainment, but the possibility of some misdiagnosis in either cohort cannot be entirely excluded based on available data.

A positive genetic correlation between ALS and schizophrenia predicts an excess of patients presenting with both diseases. Most neurologists and psychiatrists, however, will not readily acknowledge that these conditions co-occur frequently. Our genetic correlation estimate confers an odds ratio of 1.17 (1.08–1.26) for harbouring above-threshold liability for ALS given schizophrenia (or vice versa) and a lifetime risk of 1:34,336 for both phenotypes together. Thus, a very large incident cohort of 16,448 ALS patients (7,310–66,670), with detailed phenotype information, would be required to have sufficient power to detect an excess of schizophrenia within an ALS cohort. Coupled with reduced life expectancy in patients with schizophrenia, this may explain the relative dearth of epidemiological studies to date providing clinical evidence of excess comorbidity. Moreover, it has also been proposed that prolonged use of antipsychotic medication may protect against developing all of the clinical features of ALS, which would reduce the rate of observed comorbidity. Considering our novel evidence for a genetic relationship between ALS and schizophrenia, this underscores the intriguing possibility that therapeutic strategies for each condition may be useful in the other, and our findings provide rationale to consider the biology of ALS and schizophrenia as related in future drug development studies. Indeed, the glutamate-modulating ALS therapy riluzole has shown efficacy as an adjunct to risperidone, an antipsychotic medication, in reducing the negative symptoms of schizophrenia.

In conclusion, we have estimated the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6), providing molecular genetic support for our epidemiological observation of psychiatric endophenotypes within ALS kindreds. To our knowledge, this is the first study to show genetic correlation derived from polygenic overlap between neurodegenerative and neuropsychiatric phenotypes. The presence of both apparent monogenic C9orf72-driven overlap and polygenic overlap in the aetiology of ALS and schizophrenia suggests the presence of common biological processes, which may relate to disruption of cortical circuitry. As both ALS and schizophrenia are heterogeneous conditions, further genomic, biological and clinical studies are likely to yield novel insights into the pathological processes for both diseases and will provide clinical sub-stratification parameters that could drive novel drug development for both neurodegenerative and psychiatric conditions.

Methods

Study population and genetic data. For ALS, 7,740,343 SNPs genotyped in 12,577 ALS patients and 23,475 healthy controls of European ancestry organized in 27 platform- and country-defined strata were used. The schizophrenia dataset comprised GWAS summary statistics for 9,444,230 SNPs originally genotyped in 34,241 patients and 45,604 controls of European and Asian ancestry. For LD score regression, GWAS summary statistics were generated for the ALS cohort using mixed linear model association testing implemented in Genome-wide Complex Trait Analysis (GCAT) or logistic regression combined with cross-stratum meta-analysis using METAL. To evaluate sample overlap for PRS and eTDR analyses, we also obtained individual-level genotype data for 27,647 schizophrenia cases and schizophrenia GWAS dataset (Psychiatric Genomics Consortium) and dbGaP accession number phs000213.v3.p2). Using 88,971 LD-pruned (window size 200 SNPs; shift 20 SNPs; r > 0.25) SNPs in both datasets (INFO score > 0.8; MAF > 0.2), with SNPs in high-LD regions removed (Supplementary Table 4), samples were removed from the ALS dataset if they were duplicated or had a cryptically related counterpart (PLINK R > 0.1; 5,582 individuals) in the schizophrenia cohort and whole strata (representing Finnish and German samples; 3,811 individuals) were also removed if commonality with the schizophrenia cohort could not be ascertained (due to unavailability of individual-level genotype data in the schizophrenia cohort) and in which a sample overlap was suspected (Supplementary Table 3).

LD score regression. We calculated LD scores using LDSC v1.0.0 in 1 centiMorgan windows around 13,307,412 non-singleton variants genotyped in 379 European individuals (CEU, FIN, GBR, IBS and TSI populations) in the phase 1 integrated release of the 1,000 Genomes Project. For regression weights, we restricted LD score calculation to SNPs included in both the GWAS summary statistics and HapMap phase 3 for ALS meta-analysis results. For estimation in pairs of traits this was the intersection of SNPs for both traits and HapMap. Because population structure and confounding were highly controlled in the ALS summary statistics by the use of mixed linear model association tests, we constrained the LD score regression intercept to 1 for h_3 estimation in ALS, and we also estimated h_3 with a free intercept. For r_g estimation in pairs of traits this was a free parameter. We also estimated r_g using ALS meta-analysis results with free and constrained intercepts and with permuted data conserving population structure. Briefly, principal component analysis was carried out for each stratum using smartpc and the three-dimensional space defined by principal components 1–3 was equally subdivided into 1,000 cubes. Within each cube, case-control labels were randomly swapped and association statistics were re-calculated for the entire stratum using logistic regression. Study-level P-values were then calculated using inverse variance weighted fixed effect meta-analysis implemented in METAL. h_3 was estimated for these meta-analysed permuted data using LD score regression (Supplementary Table 1).

Polygenic risk score analysis. We calculated PRS for 10,032 cases and 16,627 healthy controls in the ALS dataset (duplicate and suspected or confirmed samples with the schizophrenia dataset removed), schizophrenia-associated alleles and effect sizes reported in the GWAS summary statistics for 6,843,674 SNPs included in both studies and in the phase 1 integrated release of the 1,000 Genomes Project (imputation INFO score > 0.3; minor allele frequency < 0.01; A/T and G/C SNPs removed). SNPs were clumped in two rounds (physical distance threshold of 250 kb and a LD threshold (R²) of 0.5 in the first round and a distance of 5,000 kb and LD threshold of > 0.2 in the second round) using PLINK v1.90b3, removing high-LD regions (Supplementary Table 4), resulting in a final set of 496,548 SNPs for PRS calculations. Odds ratios for autosomal SNPs reported in the schizophrenia summary statistics were log-converted to beta values and PRS weights were calculated using PLINK’s score function for twelve schizophrenia GWAS P-value thresholds (P: 5 × 10^-8, 5 × 10^-7, 5 × 10^-6, 5 × 10^-5, 5 × 10^-4, 5 × 10^-3, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. A total of 100 principal components (PCs) were generated for the ALS sample using GCTA version 1.24.4. Using R version 3.2.2, a generalized linear model was applied to model the phenotype of individuals in the ALS dataset. PCs that had a significant effect on the phenotype ($P < 0.0005$, Bonferroni-corrected for 100 PCs) were selected (PCs 1, 4, 5, 7, 8, 10, 11, 12, 14, 36, 49).
To estimate explained variance of PRS on the phenotype, a baseline linear relationship including only sex and significant PCs as variables was modelled first:

$$y = \alpha + \beta x_{sex} + \sum_{n} \beta_{n} x_{pca_{n}},$$

where y is the phenotype in the ALS dataset, x is the intercept of the model with a slope β for each variable x.

Subsequently, a linear model including polygenic scores for each schizophrenia P_r was calculated:

$$y = \alpha + \beta_{sex} x_{sex} + \sum_{n} \beta_{n} x_{pca_{n}} + \beta_{pca_{decile}} x_{decile},$$

A Nagelkerke R^2 value was obtained for every model and the baseline Nagelkerke R^2 value was subtracted, resulting in a Δ explained variance that describes the contribution of schizophrenia-based PRS to the phenotype in the ALS dataset. PRS analysis was also performed in permuted case–control data (1,000 permutations, conserving case–control ratio) to assess whether the increased Δ explained variance was a true signal associated with phenotype. Δ explained variances and P-values were averaged across permutation analyses.

To ensure we did not over- or under-correct for population effects in our model, we tested the inclusion of up to a total of 30 PCs in the model, starting with the PC with the most significant effect on the ALS phenotype (Supplementary Fig. 2). Increasing the number of PCs initially had a large effect on the Δ explained variance, but this effect levelled out after 11 PCs. On the basis of this test we are confident that adding the 11 PCs that had a significant effect on the phenotype sufficiently accounted for possible confounding due to population differences.

For the schizophrenia P_r for which we obtained the highest Δ explained variance (0.2), we subdivided observed schizophrenia-based PRS in the ALS cohort into deciles and calculated the odds ratio for being an ALS case in each decile compared to the first decile using a similar generalized linear model:

$$\frac{y}{1-y} = \frac{\exp(\alpha + \beta_{pca}_{decile})}{1 + \exp(\alpha + \beta_{pca}_{decile})}.$$

Odds ratios and 95% confidence intervals for ALS were derived by calculating the exponential function of the beta estimate of the model for each of the deciles 2–10.

Diagnostic misclassification. To distinguish the contribution of misdiagnosis from true genetic pleiotropy we used BUMIBOX25 with 417 independent ALS risk alleles in a sample of 27,647 schizophrenia patients for which individual-level genotype data were available. We also estimated the required misdiagnosis rate M of FTD–ALS as schizophrenia that would lead to the observed genetic correlation estimate as $C(C + 1)$, where $C = \rho_{SNP_g,ALS}^2$ and $\rho_{SNP_g,SCZ}$ are the number of cases in the schizophrenia and ALS datasets, respectively27 (derived in Supplementary Methods 1).

Expected comorbidity. To investigate the expected comorbidity of ALS and schizophrenia given the observed genetic correlation, we modelled the distribution in liability for ALS and schizophrenia as a bivariate normal distribution with the liability-scale covariance determined by LD score regression (Supplementary Methods 2). Lifetime risks for ALS29 and schizophrenia23 of 1/400 and 1/100, respectively, were used to calculate liability thresholds above which individuals develop ALS or schizophrenia, or both. The expected proportions of individuals above these thresholds were used to calculate the odds ratio for developing ALS given schizophrenia, or vice versa (Supplementary Methods 2). The required population size to observe a significant excess of comorbidity was calculated using the binomial power equation.

Pleiotropy-informed risk loci for ALS. Using an adapted cFDR method9 that allows shared controls between cohorts23, we estimated per-SNP cFDR given LD score-corrected8 schizophrenia GWAS P-values for ALS mixed linear model summary statistics calculated in a dataset excluding Finnish and German cohorts (in which suspected control overlap could not be determined), including all other overlapping samples (totalting 5,882). To correct for the relationship between LD and GWAS test statistics, schizophrenia summary statistics were residualized on LD score by subtracting the product of each SNP’s LD score and the univariate LD score regression coefficient for schizophrenia. cFDR values conditioned on these residualized schizophrenia GWAS P-values were calculated for mixed linear model association statistic at 6,843,670 SNPs genotyped in 10,147 ALS cases and 22,094 controls. Pleiotropic genomic loci were considered statistically significant if cFDR < 0.01 (following Andreason et al.8) and were clumped with all neighbouring SNPs based on LD ($r^2 > 0.1$) in the complete ALS dataset. Associated cFDR genomic regions were then mapped to the locations of known RefSeq transcripts in human genome build GRCh37. Genome-wide cFDR values were also tested for enrichment in 9,711 gene sets included in MAGENTA software (version 2.4, July 2011) and derived from databases such as Gene Ontology (GO, http://geneontology.org/), Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.jp/), Protein Analysis Throught Evolutionary Relationships (PANTHER, http://www.pantherdb.org/) and INGENITY (http://www.ingenity.com/). SNPs were mapped to genes including 20 kb up- and downstream regions to include regulatory elements. The enrichment cutoff applied in our analysis was based on the 95th percentile of gene scores for all genes in the genome. The null distribution of gene scores for each gene set was based on 10,000 randomly sampled gene sets with equal size. MAGENTA uses a Mann–Whitney rank-sum test to assess gene-set enrichment9.

Data availability. All data used in this study are publically available and can be accessed via the studies cited in the text. Other data are available from the authors upon reasonable request.

References

Acknowledgements
We acknowledge helpful contributions from Mr Gert Jan van de Vendel in the design and execution of PRS analyses. This study received support from the ALS Association; Fondation Thierry Latran; the Motor Neurone Disease Association of England, Wales and Northern Ireland; Science Foundation Ireland; Health Research Board (Ireland), The Netherlands ALS Foundation (Project MinE, to J.H.V., L.H.v.d.B.), the Netherlands Organisation for Health Research and Development (Vici scheme, L.H.v.d.B.) and ZonMW under the frame of E-Rare-2, the ERA Net for Research on Rare Diseases (PYRAMID). Research leading to these results has received funding from the European Community’s Health Seventh Framework Programme (FP7/2007–2013). A.G. is supported by the Research Foundation Ku Leuven (C24/16/045). A.-A. C. received salary support from the National Institute for Health Research (NIHR) Dementia Biomedical Research Unit and Biomedical Research Centre in Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Samples used in this research were in part obtained from the UK National DNA Bank for MND Research, funded by the MND Association and the Wellcome Trust. We acknowledge sample management undertaken by BioBanking Solutions funded by the Medical Research Council (MRC) at the Centre for Integrated Genomic Medical Research, University of Manchester. This is an EU Joint Programme-Neurodegenerative Disease Research (IPND) Project (STRENGTH, SOPHIA). In addition to those mentioned above, the project is supported through the following funding organizations under the aegis of IPND: UK, Economic and Social Research Council; Italy, Ministry of Health and Ministry of Education, University and Research; France, L’Agence nationale pour la recherche. The work leading up to this publication was funded by the European Community’s Health Seventh Framework Programme (FP7/2007–2013; Grant Agreement Number 259,867). We thank the International Genomics of Alzheimer’s Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i-Select chips was funded by the French National Foundation on Alzheimer’s disease and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the MRC (Grant No. 5,03,176), the Wellcome Trust (Grant No. 082604/20/27/Z) and German Federal Ministry of Education and Research: Competence Network Dementia Grant no. 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA Grant R01 AG033193 and the NIA AG081220 and AGES contract N01-AI-12,100, the NHLBI Grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA Grants: U01 AG032984. U24 AG021886, U01 AG016976, and the Alzheimer’s Association Grant ADGC-10–196728. The Project MinE GWAS Consortium included contributions from the PARASL registry, SLALOM group, SLAP registry, FAUS Sequencing Consortium, SLAGENT Consortium and NNIPPS Study Group, the Schizophrenia Working Group of the Psychiatric Genomics Consortium included contributions from the Psychosis Endophenotypes International Consortium and Wellcome Trust Case-control Consortium. Members of these eight consortia are listed in Supplementary Note 2.

Author contributions

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: O.H. has received speaking honoraria from Novartis, Biogen Idec, Sanofi Aventis and Merck-Serono. She has been a member of advisory boards for Biogen Idec, Allergen, Ono Pharmaceuticals, Novartis, Cytokinetics and Sanofi Aventis. She serves as Editor-in-Chief of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. L.H.v.d.B. serves on scientific advisory boards for Prinses Beatrix Spierfonds, Thierry Latran Foundation, Baxalta, Cytokinetics and Biogen, serves on the Editorial Board of the Journal of Neurology, Neurosurgery, and Psychiatry, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, and Journal of Neuromuscular Diseases. A.A.C. has served on advisory panels for Biogen Idec, Cytokinetics, GSK, OrionPharma and Mitsubishi-Tanabe, serves on the Editorial Boards of Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration and, and receives royalties for The Brain: A Beginner’s Guide, OneWorld Publications, and Genetics of Complex Human Diseases, Cold Spring Harbor Laboratory Press. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: McLaughlin, L. R. et al. Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nat. Commun. 8, 14774; doi: 10.1038/ncomms14774 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017
Project MinE GWAS Consortium

Schizophrenia Working Group of the Psychiatric Genomics Consortium

Stephan Ripke94,95, Benjamin M. Neale94,95,96,97, Aiden Corvin98, James T.R. Walters99, Kai-How Farh94, Peter A. Holmans99,100, Phil Lee94,95,97, Brendan Bulik-Sullivan94,95, David A. Collier101,102, Hailiang Huang94,96, Tune H. Pers96,103,104, Ingrid Agartz105,106,107, Esben Agerbo108,109,110, Margot Albus111, Madeline Alexander112, Farooq Amin113,114, Silviu A. Bacanu115, Martin Begemann116, Richard A. Belliveau Jr95, Judit Bente117,118, Sarah E. Bergen95,119, Elizabeth Bevilacqua95, Tim B. Bigdeli115, Donald W. Black120, Richard Bruggeman121, Nancy G. Buccola122, Randy L. Buckner123,124,125, William Byerley126, Wiepke Cahn4, Guiping Cai127,128, Dominique Campion129, Rita M. Cantor5, Vaughan J. Carr130,131, Noa Carrera99, Stanley V. Catts30,132, Kimberley D. Chamber95, Raymond C.K. Chan133, Ronald Y.L. Chan134, Eric Y.H. Chen134,135, Wei Chen136, Eric F.C. Cheung137, Siow Ann Chong138, C. Robert Cloninger139, David Cohen140, Nadine Cohen141, Paul Cormican98, Nick Craddock99,100, James J. Crowley142, David Curtis143,144, Michael Davidson145, Kenneth L. Davis128, Franziska Degenhardt55,56, Jurgen Del Favero146, Ditte Demontis110,147,148, Dimitris Dikeos149, Timothy Dinan150, Srdjan Djurovic107,151, Gary Donohoe98,152, Elodie Drapeau128, Jubaq Duan153,154, Frank Dudbridge155, Naser Durmishi156, Peter Eichhammer157, Johan Eriksson158,159,160, Valentina Escott-Price99, Laurent Essioux161, Ayman H. Fanous162,163,164,165, Martilias S. Farrel142, Josef Frank166, Lude Franke90, Robert Freedman167, Nelson B. Freimer6, Marion Fried168, Joseph I. Friedman128, Menachem Fromer94,95,97,169, Giulio Genovese95, Lyudmila Georgieva99, Ina Giegling168,170, Paola Giusti-Rodriguez142, Stephanie Godard171, Jacqueline I. Goldstein94,96, Vera Golimbet172, Srihari Gopal141, Jacob Gratten173, Liewe de Haan174, Christian Hammer116, Marilan L. Hamshire99, Mark Hansen175, Thomas Hansen110,176, Vahram Haroutunian128,177,178, Annette M. Hartmann168, Frans A. Henskens130,179,180, Stefan Herms55,56,58, Joel N. Hirschhorn96,104,181, Per Hoffmann55,56,58, Andrea Hofman55,56, Mads V. Holtegaard182, David M. Hougaard182, Masashi Ikeda183, Inge Joa184, Antonio Julia185, Luba Kalaydjieva186,187, Sena Karachanak-Yankova188, Juha Karjalainen90, David Kavanagh99,

94 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 95 Stanley Center for Psychiatric Research, Broad Institute of M.I.T. and Harvard, Cambridge, Massachusetts, USA. 96 Medical and Population Genetics Program, Broad Institute of M.I.T. and Harvard,
Cambridge, Massachusetts, USA. 97Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 98Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College, Dublin, Ireland. 99MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. 100National Centre for Mental Health, Cardiff University, Cardiff, Wales. 101Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK. 102Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK. 103Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. 104Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, USA. 105Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 106Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway. 107NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 108Centre for Integrative Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark. 109National Centre for Register-based Research, Aarhus University, Aarhus, Denmark. 110The Lundbeck Foundation Initiative for Integrative Psychiatric Research, IPYSCH, Denmark. 111State Mental Hospital, Haar, Germany. 112Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 113Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA. 114Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA. 115Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA. 116Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. 117Department of Medical Genetics, University of Pecs, Pécs, Hungary. 118Szentagotai Research Center, University of Pécs, Pécs, Hungary. 119Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 120Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. 121University Medical Center Groningen, Department of Psychiatry, University of Groningen, The Netherlands. 122School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA. 123Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, Massachusetts, USA. 124Center for Brain Science, Harvard University, Cambridge Massachusetts, USA. 125Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. 126Department of Psychiatry, University of California at San Francisco, San Francisco, California, USA. 127Department of Human Genetics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 128Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 129Center for Mental Health Sciences, The University of Sydney, Sydney, Australia. 130School of Psychiatry, University of New South Wales, New South Wales, Sydney, Australia. 131Royal Brisbane and Women’s Hospital, University of Queensland, Queensland, Brisbane, Australia. 132Institute of Psychology, Chinese Academy of Science, Beijing, China. 133Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 134State Ket Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 135Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA. 136Castle Peak Hospital, Hong Kong, China. 137Institute of Mental Health, Singapore. 138Department of Psychiatry, Washington University in St Louis, Missouri, USA. 139Department of Child and Adolescent Psychiatry, Pierre and Marie Curie Faculty of Medicine and Brain and Spinal Cord Institute (ICM), Paris, France. 140Neurosciences Therapeutic Area, Janssen Research and Development, LLC, Raritan, New Jersey, USA. 141Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 142Department of Psychological Medicine, Queen Mary University of London, London, UK. 143Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK. 144Sheba Medical Center, Tel Hashomer, Israel. 145Applied Molecular Genomics Unit, VIB. Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium. 146Centre for Integrative Sequencing, ISEQ, Aarhus University, Aarhus, Denmark. 147Department of Biomedicine, Aarhus University, Aarhus, Denmark. 148First Department of Psychiatry, University of Athens Medical School, Athens, Greece. 149Department of Biomedicine, Aarhus University, Aarhus, Denmark. 150Department of Psychiatry, University College Cork, Ireland. 151Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. 152Cognitive and Therapeutics Group, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland. 153Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA. 154Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois, USA. 155Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, London, UK. 156Department of Child and Adolescent Psychiatry, University Clinic of Psychiatry, Sköje, Republic of Macedonia. 157Department of Psychiatry, University of Regensburg, Regensburg, Germany. 158Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland. 159Folkhälsan Research Center, Helsinki, Finland. 160National Institute for Health and Welfare, Helsinki, Finland. 161Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffman-La Roche, Basel, Switzerland. 162Department of Psychiatry, Georgetown University School of Medicine, Washington, District Of Columbia, USA. 163Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. 164Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA. 165Mental Health Service Line, Washington V.A. Medical Center, Washington, District Of Columbia, USA. 166Department of Genetic Epidemiology in Psychiatry, Center Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany. 167Department of Psychiatry, University of Colorado Denver, Aurora, Colorado, USA. 168Department of Psychiatry, University of Halle, Halle, Germany. 169Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 170Department of Psychiatry, Munich, Munich, Germany. 171Department of Psychiatry and Human and Molecular Genetics, INSERM, Institut de Myologie, Hôpital de la Pitié-Salpêtrière, Paris, France. 172Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia. 173Queenland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia. 174Academic Medical Centre University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands. 175ILLUMINA, Inc., La Jolla, California, USA. 176Institute of Biological Psychiatry, MHC. Sc, Hans, Mental Health Services, Copenhagen, Denmark. 177Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 178J Peters V.A. Medical Center, Bronx, New York, USA. 179Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, Australia. 180School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle, Australia. 181Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 182Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark. 183Department of Psychiatry, Fukuoka Health University School of Medicine, Toyoake, Aichi, Japan. 184Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway. 185Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain. 186Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 187Perkins Institute for Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 188Department of Medical Genetics, Medical University, Sofia, Bulgaria. 189Department of Psychology, University of Colorado Boulder, Boulder, Colorado, USA. 190Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. 191Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. 192Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 193Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia. 194Latvian Biomedical Research and Study Centre, Riga, Latvia. 195Department of Psychiatry and Zilka Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California, USA. 196Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 197Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. 198Department of Biology and Medical Genetics, Charles University Prague, Prague, Czech Republic. 199Pierre and Marie Curie Faculty of Medicine, Paris, France. 200Duke-NUS Graduate Medical School, Singapore. 201Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 202Centre for Genomics Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 203Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 204Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA. 205Department of Psychiatry, Columbia University, New York,
New York, USA. 206Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, Australia. 207Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland. 208Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland. 209Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. 210Department of Psychiatry, University of Bonn, Bonn, Germany. 211Centre National de la Recherche Scientifique, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Hôpital de la Pitié Salpêtrière, Paris, France. 212Department of Genomics Mathematics, University of Bonn, Bonn, Germany. 213Research Unit, Sarlant Hospital, Kristiansand, Norway. 214Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA. 215Virginia Boston Health Care System, Brockton, Massachusetts, USA. 216Department of Psychiatry, National University of Ireland Galway, Ireland. 217Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK. 218Division of Psychiatry, University of Edinburgh, Edinburgh, UK. 219Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 220Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. 221Estonian Genome Center, University of Tartu, Tartu, Estonia. 222School of Psychology, University of Newcastle, Newcastle, Australia. 223First Psychiatric Clinic, Medical University, Sofia, Bulgaria. 224Department P, Aarhus University Hospital, Risskov, Denmark. 225Department of Psychiatry, Royal College of Surgeons in Ireland, Ireland. 226King’s College London, London, UK. 227Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht, The Netherlands. 228Institute of Translational Medicine, University Liverpool, UK. 229Max Planck Institute of Psychiatry, Munich, Germany. 230Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. 231Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. 232Department of Psychiatry, Queensland Brain Institute and Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia. 233Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. 234Department of Psychiatry, Trinity College Dublin, Dublin, Ireland. 235El Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA. 236Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden. 237DETECT Early Intervention Service for Psychosis, Blackrock, Dublin, Ireland. 238Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK. 239Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California, USA. 240Institute of Psychiatry at King’s College London, London, UK. 241Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, Australia. 242Department of Psychiatry, University of Helsinki, Finland. 243Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Helsinki, Finland. 244Medical Faculty, University of Belgrade, Belgrade, Serbia. 245Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 246Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland. 247Department of Epidemiology, Harvard University, Boston, Massachusetts, USA. 248Department of Psychiatry, University of Oxford, Oxford, UK. 249Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 250Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 251Pharmatherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA. 252Department of Psychiatry and Psychotherapy, University of Gottingen, Göttingen, Germany. 253Psychiatry and Psychotherapy Clinic, University of Erlangen, Erlangen, Germany. 254Hunter New England Health Service, Newcastle, Australia. 255School of Biomedical Sciences, University of Newcastle, Newcastle, Australia. 256Department of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 257University of Iceland, Landspitali, National University Hospital, Reykjavik, Iceland. 258Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSU), Tbilisi, Georgia. 259Research and Development, Bronx Veterans Affairs Medical Center, New York, New York, USA. 260Welcome Trust Centre for Human Genetics, Oxford, UK. 261deCODE Genetics, Reykjavik, Iceland. 262Department of Clinical Neurology, Medical University of Vienna, Vienna, Austria. 263Lieber Institute for Brain Development, Baltimore, Maryland, USA. 264Department of Medical Genetics, University Medical Centre, Utrecht, The Netherlands. 265Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands. 266Berkshire Healthcare N.H.S. Foundation Trust, Bracknell, UK. 267Section of Psychiatry, University of Verona, Verona, Italy. 268Department of Psychiatry, University of Oulu, Oulu, Finland. 269Hospital University of Oulu, Oulu, Finland. 270Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland. 271Health Research Board, Dublin, Ireland. 272Department of Psychiatry and Clinical Neurosciences, School of Psychiatry and Clinical Neurosciences, Queen Elizabeth I.I. Medical Centre, Perth, Western Australia, Australia. 273Department of psychological and Mental Health, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK. 274Computational Sciences CoE, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA. 275Human Genetics, Genome Institute of Singapore, Singapore. 276University College London, London, UK. 277Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 278Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel. 279 Neuroscience Discovery and Translational Area, Pharma Research and Early Development, F. Hoffman-La Roche, Basel, Switzerland. 280School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia. 281The Perkins Institute of Medical Research, Perth, Australia. 282JWACentre for Clinical Research in Neuropsychiatry, Sweden. 283Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 284The Feinstein Institute for Medical Research, Manhasset, New York, USA. 285The Hofstra NS-LIJ School of Medicine, Hempstead, New York, USA. 286The Zucker Hillside Hospital, Glen Oaks, New York, USA. 287Saw Swee Hock School of Public Health, National University of Singapore, Singapore. 288Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia. 289The Broad Institute of M.I.T. and Harvard, Cambridge, Massachusetts, USA. 290Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. 291Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, Rotterdam, The Netherlands. 292Department of Complex Trait Genetics, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 293Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. 294University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, UK. 295Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 296Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.