Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Calcium channel blockade with nimodipine reverses MRI evidence of cerebral oedema following acute hypoxia

Rowland, Matthew, Ezra, Martyn, Winkler, Anderson, Garry, Payashi, Lamb, Catherine, Kelly, Michael, Okell, Thomas, Westbrook, Jon, Wise, Richard G. ORCID: https://orcid.org/0000-0003-1700-2144, Douaud, Gwenaelle and Pattinson, Kyle 2019. Calcium channel blockade with nimodipine reverses MRI evidence of cerebral oedema following acute hypoxia. Journal of Cerebral Blood Flow and Metabolism 39 (2) , pp. 285-301. 10.1177/0271678X17726624

[thumbnail of Wise. Calcium_hypoxia_JCBFM_resubmission_final_compiled.pdf]
Preview
PDF - Accepted Post-Print Version
Download (2MB) | Preview

Abstract

Acute cerebral hypoxia causes rapid calcium shifts leading to neuronal damage and death. Calcium channel antagonists improve outcomes in some clinical conditions, but mechanisms remain unclear. In 18 healthy participants we: (i) quantified with multiparametric MRI the effect of hypoxia on the thalamus, a region particularly sensitive to hypoxia, and on the whole brain in general; (ii) investigated how calcium channel antagonism with the drug nimodipine affects the brain response to hypoxia. Hypoxia resulted in a significant decrease in apparent diffusion coefficient (ADC), a measure particularly sensitive to cell swelling, in a widespread network of regions across the brain, and the thalamus in particular. In hypoxia, nimodipine significantly increased ADC in the same brain regions, normalizing ADC towards normoxia baseline. There was positive correlation between blood nimodipine levels and ADC change. In the thalamus, there was a significant decrease in the amplitude of low frequency fluctuations (ALFF) in resting state functional MRI and an apparent increase of grey matter volume in hypoxia, with the ALFF partially normalized towards normoxia baseline with nimodipine. This study provides further evidence that the brain response to acute hypoxia is mediated by calcium, and importantly that manipulation of intracellular calcium flux following hypoxia may reduce cerebral cytotoxic oedema

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Psychology
Publisher: SAGE Publications
ISSN: 0271-678X
Date of First Compliant Deposit: 10 July 2017
Date of Acceptance: 6 July 2017
Last Modified: 14 Nov 2024 02:00
URI: https://orca.cardiff.ac.uk/id/eprint/102230

Citation Data

Cited 10 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics