Ghosh, S., Xie, M., Bowen, C.R., Davies, P.R. ORCID: https://orcid.org/0000-0003-4394-766X, Morgan, D.J. ORCID: https://orcid.org/0000-0002-6571-5731 and Mandal, D. 2017. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure. Scientific Reports 7 (1) , 16703. 10.1038/s41598-017-16822-3 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (5MB) | Preview |
Abstract
In this paper, a novel infra-red (IR) sensitive Er3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, SM ~ 3.4 VPa−1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry Cardiff Catalysis Institute (CCI) |
Publisher: | Nature Publishing Group |
ISSN: | 2045-2322 |
Funders: | Science and Engineering Research Board |
Date of First Compliant Deposit: | 4 December 2017 |
Date of Acceptance: | 14 November 2017 |
Last Modified: | 04 May 2023 06:12 |
URI: | https://orca.cardiff.ac.uk/id/eprint/107258 |
Citation Data
Cited 23 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |