Sehmi, H. S., Langbein, Wolfgang ORCID: https://orcid.org/0000-0001-9786-1023 and Mulyarov, Egor ORCID: https://orcid.org/0000-0002-2878-4148 2018. Optimizing the Drude-Lorentz model for material permittivity: Examples for semiconductors. Presented at: 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, Russia, 22-25 May 2017. Progress In Electromagnetics Research Symposium - Spring (PIERS) , 2017. IEEE, pp. 994-1000. 10.1109/PIERS.2017.8261889 |
Preview |
PDF
- Accepted Post-Print Version
Download (535kB) | Preview |
Abstract
Approximating the frequency dispersion of the permittivity of materials with simple analytical functions is of fundamental importance for understanding and modeling their optical properties. Quite generally, the permittivity can be treated in the complex frequency plane as an analytic function having a countable number of simple poles which determine the dispersion of the permittivity, with the pole weights corresponding to generalized conductivities of the medium at these resonances. The resulting Drude-Lorentz model separates the poles at frequencies with zero real part (Ohm's law and Drude poles) from poles with finite real part (Lorentz poles). To find the parameters of such an analytic function, we minimize the error weighted deviation between the model and measured values of the permittivity. We show examples of such optimizations for various semiconductors (Si, GaAs and Ge), for different frequency ranges and up to five pairs of Lorentz poles accounted for in the model.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | IEEE |
ISBN: | 9781509062706 |
Date of First Compliant Deposit: | 3 May 2018 |
Date of Acceptance: | 18 January 2018 |
Last Modified: | 23 Oct 2022 13:37 |
URI: | https://orca.cardiff.ac.uk/id/eprint/111167 |
Citation Data
Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |