Wheeldon, James
2019.
A systems analysis of dendritic cell interactions with
HIV-1 during cell-cell transmission: a focus on
cytokines, chemokines and receptors.
PhD Thesis,
Cardiff University.
![]() Item availability restricted. |
Preview |
PDF
- Accepted Post-Print Version
Download (10MB) | Preview |
![]() |
PDF (Cardiff University Electronic Publication Form)
- Supplemental Material
Restricted to Repository staff only Download (839kB) |
Abstract
The propagation of HIV-1 is driven by mechanisms of innate immune evasion, a phenomenon observed in dendritic cells (DCs) and their subsets, one of the earliest cell types likely to encounter HIV-1 during acute infection. Infected DCs are capable of highly effective viral transfer to target CD4+ T-cells across the virological synapse (VS), a specialised virus-induced cell junction, which enables rapid viral dissemination and accelerates disease progression. Previous studies have implicated a major role for cytokines and chemokines in the infection of DC subsets, though their functions are yet to be fully characterised. Integrative, data-driven approaches to disease biology have become central to understanding systems-level processes. In this study, we used high-throughput RNAi screening techniques using the On-Target SMARTpool cytokine/chemokine siRNA library of 319 genes to screen for the differential effects on HIV-1 viral transfer from monocyte-derived DCs to CD4+ Tcells. Our screen highlights a potent restrictive role for the cytokine-mediator protein, Macrophage MigrationInhibitoryFactor(MIF)duringHIV-1trans-infection. TheactivitiesofMIFwerevalidated using three key loss-of-function assays including genetic downregulation, neutralisation by biologics and pharmacological inhibition in trans- to both SupT1 cell lines and autologous CD4+ T-cells. FurtherinvestigationsfoundthatMIFregulatesautophagyinMDDCwhichhasbeenpreviously been described as a protective mechanism against infection by HIV-1. Loss of MIF was associated with impaired LC3+ autophagosome formation, leading to intracellular accumulation of virus and enhanced capacity for cell-cell transfer. These findings bridge an important gap between the cytokine network and autophagy which will inform therapeutic strategies against HIV-1 infection and transmission.
Item Type: | Thesis (PhD) |
---|---|
Date Type: | Completion |
Status: | Unpublished |
Schools: | Medicine |
Date of First Compliant Deposit: | 19 December 2019 |
Last Modified: | 26 Mar 2021 16:09 |
URI: | https://orca.cardiff.ac.uk/id/eprint/127659 |
Actions (repository staff only)
![]() |
Edit Item |