Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry.

Avery, Simon V, Harwood, John L and Lloyd, David ORCID: https://orcid.org/0000-0002-5656-0571 1995. Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl. Environ. Microbiol. 61 (3) , pp. 1124-1132.

Full text not available from this repository.

Abstract

Phagocytosis in the common grazing soil amoeba Acanthamoeba castellanii was characterized by flow cytometry. Uptake of fluorescently labelled latex microbeads by cells was quantified by appropriate setting of thresholds on light scatter channels and, subsequently, on fluorescence histograms. Confocal laser scanning microscopy was used to verify the effectiveness of sodium azide as a control for distinguishing between cell surface binding and internalization of beads. It was found that binding of beads at the cell surface was complete within 5 min and 80% of cells had beads associated with them after 10 min. However, the total number of phagocytosed beads continued to rise up to 2 h. The prolonged increase in numbers of beads phagocytosed was due to cell populations containing increasing numbers of beads peaking at increasing time intervals from the onset of phagocytosis. Fine adjustment of thresholds on light scatter channels was used to fractionate cells according to cell volume (cell cycle stage). Phagocytotic activity was approximately threefold higher in the largest (oldest) than in the smallest (newly divided) cells of A. castellanii and showed some evidence of periodicity. At no stage in the cell cycle did phagocytosis cease. Binding and phagocytosis of beads were also markedly influenced by culture age and rate of rotary agitation of cell suspensions. Saturation of phagocytosis (per cell) at increasing bead or decreasing cell concentrations occurred at bead/cell ratios exceeding 10:1. This was probably a result of a limitation of the vacuolar uptake system of A. castellanii, as no saturation of bead binding was evident. The advantages of flow cytometry for characterization of phagocytosis at the single-cell level in heterogeneous protozoal populations and the significance of the present results are discussed.

Item Type: Article
Status: Published
Schools: Biosciences
Last Modified: 26 Oct 2022 08:31
URI: https://orca.cardiff.ac.uk/id/eprint/127700

Citation Data

Cited 36 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item