Adhikari, R. X., Arai, K., Brooks, A. F., Wipf, C., Aguiar, O., Altin, P., Barr, B., Barsotti, L., Bassiri, R., Bell, A., Billingsley, G., Birney, R., Blair, D., Bonilla, E., Briggs, J., Brown, D. D., Byer, R., Cao, H., Constancio, M., Cooper, S., Corbitt, T., Coyne, D., Cumming, A., Daw, E., deRosa, R., Eddolls, G., Eichholz, J., Evans, M., Fejer, M., Ferreira, E. C., Freise, A., Frolov, V. V., Gras, S., Green, A., Grote, H. ORCID: https://orcid.org/0000-0002-0797-3943, Gustafson, E., Hall, E. D., Hammond, G., Harms, J., Harry, G., Haughian, K., Heinert, D., Heintze, M., Hellman, F., Hennig, J., Hennig, M.., Hild, S., Hough, J., Johnson, W.., Kamai, B., Kapasi, D., Komori, K., Koptsov, D., Korobko, M., Korth, W. Z., Kuns, K., Lantz, B., Leavey, S., Magana-Sandoval, F., Mansell, G., Markosyan, A., Markowitz, A., Martin, I., Martin, R., Martynov, D., McClelland, D. E., McGhee, G., McRae, T., Mills, J. ORCID: https://orcid.org/0000-0002-0808-7804, Mitrofanov, V., Molina-Ruiz, M., Mow-Lowry, C., Munch, J., Murray, P., Ng, S., Okada, M. A., Ottaway, D. J., Prokhorov, L., Quetschke, V., Reid, S., Reitze, D., Richardson, J., Robie, R., Romero-Shaw, I., Route, R., Rowan, S., Schnabel, R., Schneewind, M., Seifert, F.., Shaddock, D., Shapiro, B.., Shoemaker, D., Silva, A. S., Slagmolen, B., Smith, J., Smith, N., Steinlechner, J., Strain, K., Taira, D., Tait, S., Tanner, D., Tornasi, Z., Torrie, C., Van Veggel, M., Vanheijningen, J., Veitch, P., Wade, A., Wallace, G., Ward, R., Weiss, R., Wessels, P.., Willke, B., Yamamoto, H., Yap, M. J. and Zhao, C. 2020. A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity 37 (16) , 165003. 10.1088/1361-6382/ab9143 |
Preview |
PDF
- Accepted Post-Print Version
Download (6MB) | Preview |
Abstract
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | IOP Publishing |
ISSN: | 0264-9381 |
Date of First Compliant Deposit: | 30 July 2020 |
Date of Acceptance: | 7 May 2020 |
Last Modified: | 15 Nov 2024 21:00 |
URI: | https://orca.cardiff.ac.uk/id/eprint/133880 |
Citation Data
Cited 63 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |