Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The structural and compositional basis for the transparency and physical properties of the Skogsbergia lerneri carapace

Rumney, Benjamin 2020. The structural and compositional basis for the transparency and physical properties of the Skogsbergia lerneri carapace. PhD Thesis, Cardiff University.
Item availability restricted.

[img]
Preview
PDF - Accepted Post-Print Version
Download (10MB) | Preview
[img] PDF - Supplemental Material
Restricted to Repository staff only

Download (100kB)

Abstract

Background: Skogsbergia lerneri (Kornicker, 1958) is a species of ostracod which, like all crustaceans, has a protective exoskeleton (or carapace). As well as being used for a protective function, the S. lerneri carapace is also transparent. Understanding how the carapace is transparent while retaining its protective function was the primary aim of this thesis. Results: Ultrastructural analysis showed that the carapace consisted of an epicuticle, exocuticle and an endocuticle split into a calcified, crystalline endocuticle and a laminated endocuticle. Numerous structural adaptations were seen to minimise refractive index changes at the layer intersections. These layers developed along with growth of the ostracod, maintaining similar proportions throughout. Microstructural analysis identified a chitin based second harmonic generated signal from the carapace. Pixel analysis of this signal showed a consistent level of chitin expression (~60-80% of the total carapace) throughout all the developmental stages except instar 4, which showed a lower level of expression. Elemental analysis showed that the calcified, crystalline layer comprised mainly calcium, oxygen and magnesium, leading to the assumption that the structures were calcium carbonate. X-ray absorption near edge structure analysis revealed that the calcium carbonate consisted of entirely amorphous calcium carbonate in the early to middle stages of development and a mix of amorphous and aragonite in the later stages. Unlike most crustaceans, calcite was not seen in any carapaces. Optical testing showed a consistent refractive index across all stages (1.401-1.406) leading to a mean 99.94% transmission of light at the carapace surface in seawater. Spectrophotometric results showed that light transmission increased at longer wavelengths in the younger samples but maintained a consistent level by the adult stage. Conclusions: Through the various structural adaptations of the carapace, in combination with the rare calcium carbonate polymorph distribution and its overall thinness, the S. lerneri is able to maintain its transparency without sacrificing many of its physical properties.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Optometry and Vision Sciences
Subjects: R Medicine > RE Ophthalmology
Uncontrolled Keywords: Ostracod, Skogsbergia lerneri, transparency, carapace, ultrastructure, microstructure, composition, optical properties, electron microscopy, x-ray analysis, non-linear signal
Date of First Compliant Deposit: 22 September 2020
Last Modified: 22 Sep 2020 07:51
URI: http://orca.cardiff.ac.uk/id/eprint/134967

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics