Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Chemogenetics reveal an anterior cingulate-thalamic pathway for attending to task-relevant information

Bubb, Emma J. ORCID: https://orcid.org/0000-0001-7008-6418, Aggleton, John P. ORCID: https://orcid.org/0000-0002-5573-1308, O'Mara, Shane M. and Nelson, Andrew J. D. ORCID: https://orcid.org/0000-0002-5171-413X 2021. Chemogenetics reveal an anterior cingulate-thalamic pathway for attending to task-relevant information. Cerebral Cortex 31 (4) , pp. 2169-2186. 10.1093/cercor/bhaa353

[thumbnail of bhaa353.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Psychology
Publisher: Oxford University Press
ISSN: 1047-3211
Funders: Wellcome Trust
Date of First Compliant Deposit: 29 October 2020
Date of Acceptance: 27 October 2020
Last Modified: 06 Jul 2023 16:32
URI: https://orca.cardiff.ac.uk/id/eprint/136033

Citation Data

Cited 11 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics