Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions

Venezia, B., Cao, E., Matam, S. K., Waldron, C., Cibin, G., Gibson, E. K., Golunski, S., Wells, P. P., Silverwood, I., Catlow, C. R. A., Sankar, G. and Gavriilidis, A. 2020. Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions. Catalysis Science and Technology 10 (23) , pp. 7842-7856. 10.1039/D0CY01608J

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 μm × 600 μm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Chemistry
Cardiff Catalysis Institute (CCI)
Additional Information: Attribution 3.0 Unported (CC BY 3.0)
Publisher: Royal Society of Chemistry
ISSN: 2044-4753
Funders: EPSRC
Date of First Compliant Deposit: 4 January 2021
Date of Acceptance: 2 October 2020
Last Modified: 28 Apr 2021 13:15
URI: http://orca.cardiff.ac.uk/id/eprint/137242

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics