Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

High stability and long cycle life of rechargeable sodium-ion battery using manganese oxide cathode: a combined density functional theory (DFT) and experimental study

Pandit, Bidhan, Rondiya, Sachin R., Dzade, Nelson Y. ORCID: https://orcid.org/0000-0001-7733-9473, Shaikh, Shoyebmohamad F., Kumar, Nitish, Goda, Emad S., Al-Kahtani, Abdullah A., Mane, Rajaram S., Mathur, Sanjay and Salunkhe, Rahul R. 2021. High stability and long cycle life of rechargeable sodium-ion battery using manganese oxide cathode: a combined density functional theory (DFT) and experimental study. ACS Applied Materials and Interfaces 13 (9) , pp. 11433-11441. 10.1021/acsami.0c21081

[thumbnail of acsami.0c21081.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

Sodium-ion batteries (SIBs) can develop cost-effective and safe energy storage technology for substantial energy storage demands. In this work, we have developed manganese oxide (α-MnO2) nanorods for SIB applications. The crystal structure, which is crucial for high-performance energy storage, is examined systematically for the metal oxide cathode. The intercalation of sodium into the α-MnO2 matrix was studied using the theoretical density functional theory (DFT) studies. The DFT studies predict Na ions’ facile diffusion kinetics through the MnO2 lattice with an attractively low diffusion barrier (0.21 eV). When employed as a cathode material for SIBs, MnO2 showed a moderate capacity (109 mAh·g–1 at C/20 current rate) and superior life cyclability (58.6% after 800 cycles) in NaPF6/EC+DMC (5% FEC) electrolyte. It shows a much higher capacity of 181 mAh·g–1 (C/20 current rate) in NaClO4/PC (5% FEC) electrolyte, though it suffers fast capacity fading (11.5% after 800 cycles). Our findings show that high crystallinity and hierarchical nanorod morphology of the MnO2 are responsible for better cycling performance in conjunction with fast and sustained charge-discharge behaviors.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Advanced Research Computing @ Cardiff (ARCCA)
Publisher: American Chemical Society
ISSN: 1944-8244
Funders: EPSRC
Date of First Compliant Deposit: 2 March 2021
Date of Acceptance: 4 February 2021
Last Modified: 05 May 2023 03:54
URI: https://orca.cardiff.ac.uk/id/eprint/139170

Citation Data

Cited 36 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics