Quichimbo, Edisson Andres, Singer, Michael Bliss ORCID: https://orcid.org/0000-0002-6899-2224, Michaelides, Katerina, Hobley, Daniel E. J. ORCID: https://orcid.org/0000-0003-2371-0534, Rosolem, Rafael and Cuthbert, Mark O. ORCID: https://orcid.org/0000-0001-6721-022X 2021. DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance. Geoscientific Model Development 14 , pp. 6893-6917. 10.5194/gmd-14-6893-2021 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (4MB) | Preview |
Abstract
Dryland regions are characterized by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatiotemporal scales including spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses and focused groundwater recharge. Lack of available data and the high computational costs of explicit representation of ephemeral surface-groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious hydrological model (DRYP) that incorporates the key processes of water partitioning in dryland regions, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash efficiency (NSE) ~0.7), evapotranspiration (NSE > 0.6) and soil moisture (NSE ~0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment, and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ~35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences Water Research Institute (WATER) |
Additional Information: | This work is distributed under the Creative Commons Attribution 4.0 License |
Publisher: | European Geosciences Union |
ISSN: | 1991-959X |
Funders: | NERC |
Date of First Compliant Deposit: | 5 October 2021 |
Date of Acceptance: | 22 September 2021 |
Last Modified: | 03 May 2023 18:52 |
URI: | https://orca.cardiff.ac.uk/id/eprint/144694 |
Citation Data
Cited 3 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |