Yu, Zeyuan, Zhao, Wu, Guo, Xin, Hu, Huicong, Fu, Chuan and Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940 2022. Multi-indicators decision for product design solutions: a TOPSIS-MOGA integrated model. Processes 10 (2) , 303. 10.3390/pr10020303 |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (1MB) |
Abstract
Design decisions occur in all phases of product design and largely affect the merits of the final solution, which will ultimately determine the success or failure of the product in the market. Product design is a continuous process, and a large number of existing studies have proposed decision methods and decision indicators for the characteristics of different stages of design. These methods and indicators can meet the requirements of one of the phases: demand analysis, conceptual design, or detailed design. However, further research can still be conducted on the integration of methods throughout the design phase, using intelligent design methods, and improving the design continuity and efficiency. To address this problem, a TOPSIS-MOGA-based multi-indicators decision model for product design solutions is proposed, including its product design process, decision algorithm, and selection method. First, a TOPSIS-MOGA integrated model for conceptual design and detailed design process is established, the continuity of decision-making methods is achieved by integrating decision indicators. Second, conceptual design solutions are selected through the technique for order of preference by similarity to ideal solution (TOPSIS), based on hesitant fuzzy linguistic term sets and entropy weight method. Finally, detailed design solutions are selected through a multiobjective genetic algorithm (MOGA), based on a polynomial-based response surface model and central combination experimental design method. A case study of the decision-making in the design of high-voltage electric power fittings is presented, the conceptual design phase and the detailed design phase are connected through the indicators, which demonstrates that the proposed approach is helpful in the decision-making of the product design solutions.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Engineering |
Publisher: | MDPI |
ISSN: | 2227-9717 |
Date of First Compliant Deposit: | 7 February 2022 |
Date of Acceptance: | 29 January 2022 |
Last Modified: | 04 May 2023 07:10 |
URI: | https://orca.cardiff.ac.uk/id/eprint/147084 |
Citation Data
Cited 2 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |