Gill, Joel C. ORCID: https://orcid.org/0000-0002-8721-863X and Malamud, Bruce D. 2016. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth System Dynamics 7 (3) , pp. 659-679. 10.5194/esd-7-659-2016 |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) |
Abstract
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences |
Additional Information: | Creative Commons Attribution 3.0 License |
Publisher: | European Geosciences Union (EGU) / Copernicus Publications |
ISSN: | 2190-4979 |
Date of First Compliant Deposit: | 19 August 2022 |
Date of Acceptance: | 25 May 2016 |
Last Modified: | 15 May 2023 14:21 |
URI: | https://orca.cardiff.ac.uk/id/eprint/151554 |
Citation Data
Cited 96 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |