Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The catalytic reactivity of alloys; ethanol and formic acid decomposition on Cu-Pd(110)

Bowker, Michael ORCID: https://orcid.org/0000-0001-5075-1089, Holroyd, Richard and Perkins, Neil 2022. The catalytic reactivity of alloys; ethanol and formic acid decomposition on Cu-Pd(110). Journal of Physical Chemistry C 126 (37) , pp. 15703-15709. 10.1021/acs.jpcc.2c04881

[thumbnail of acs.jpcc.2c04881.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview
License URL: http://creativecommons.org/licenses/by/4.0/
License Start date: 12 September 2022

Abstract

The effect of alloying Cu and Pd on the reactivity pattern for formic acid and for ethanol has been examined. The electronic structure of the material is strongly affected by the alloying, with the d-band lowered in energy and filled, compared with Pd alone. Hence the reactivity would be expected to be strongly affected by the alloying. This appears to be the case for formic acid decomposition, whose decomposition temperature in temperature-programmed desorption is shifted by alloying and is between the temperatures for the individual components (at 350 K, compared with 250 and 470 K for Pd and Cu, respectively). However, when a different molecule is chosen as the probe of surface reactivity, namely, ethanol, we come to a very different conclusion. Here the individual reactivity patterns for the two elemental components of the alloy are seen, namely, dehydrogenation on the Cu (to produce acetaldehyde) and decarbonylation on Pd (to methane and CO). There are effects of alloying on destabilizing the former pathway and stabilizing the latter, but the major conclusion from this work is that it is not average electronic structure that dictates reactivity but the individual atomic nature of the surface components. Only monodentate adsorbates truly probe this behavior.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Cardiff Catalysis Institute (CCI)
Publisher: American Chemical Society
ISSN: 1932-7447
Funders: EPSRC
Date of First Compliant Deposit: 23 September 2022
Date of Acceptance: 22 August 2022
Last Modified: 07 Jun 2023 17:19
URI: https://orca.cardiff.ac.uk/id/eprint/152808

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics