Muljarov, Egor ORCID: https://orcid.org/0000-0002-2878-4148, Takagahara, T. and Zimmermann, R. 2005. Phonon-induced exciton dephasing in quantum dot molecules. Physical Review Letters (PRL) 95 , 177405. 10.1103/PhysRevLett.95.177405 |
Preview |
PDF
Download (1MB) | Preview |
Abstract
A new microscopic approach to the optical transitions in quantum dots and quantum dot molecules, which accounts for both diagonal and nondiagonal exciton-phonon interaction, is developed. The cumulant expansion of the linear polarization is generalized to a multilevel system and is applied to calculation of the full time dependence of the polarization and the absorption spectrum. In particular, the broadening of zero-phonon lines is evaluated directly and discussed in terms of real and virtual phonon-assisted transitions. The influence of Coulomb interaction, tunneling, and structural asymmetry on the exciton dephasing in quantum dot molecules is analyzed.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | American Physical Society |
ISSN: | 0031-9007 |
Last Modified: | 05 May 2023 05:39 |
URI: | https://orca.cardiff.ac.uk/id/eprint/1608 |
Citation Data
Cited 59 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |