Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Stability of single gold atoms on defective and doped diamond surfaces

Chaudhuri, Shayantan, Logsdail, Andrew J. ORCID: https://orcid.org/0000-0002-2277-415X and Maurer, Reinhard J. 2023. Stability of single gold atoms on defective and doped diamond surfaces. Journal of Physical Chemistry C 127 (32) , pp. 16187-16203. 10.1021/acs.jpcc.3c03900

[thumbnail of jp3c03900.pdf] PDF - Published Version
Download (6MB)
License URL: https://creativecommons.org/licenses/by/4.0/
License Start date: 7 August 2023

Abstract

Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures in electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single gold adatoms on the BDD surfaces. We investigate the adsorption energy and kinetic stability of single gold atoms adsorbed onto an atomistic model of BDD surfaces by using density functional theory. The surface model is constructed using hybrid quantum mechanics/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density functional approximations to predict the adsorption structure, energy, and barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor adatoms on vacancy sites. We further investigated the thermal stability of gold adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single gold adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Additional Information: License information from Publisher: LICENSE 1: URL: https://creativecommons.org/licenses/by/4.0/, Start Date: 2023-08-07
Publisher: American Chemical Society
ISSN: 1932-7447
Date of First Compliant Deposit: 21 August 2023
Date of Acceptance: 24 July 2023
Last Modified: 22 Aug 2023 04:09
URI: https://orca.cardiff.ac.uk/id/eprint/161967

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics