Gomez, Haley Louise ORCID: https://orcid.org/0000-0003-3398-0052, Dunne, Loretta, Eales, Stephen Anthony ORCID: https://orcid.org/0000-0002-7394-426X, Ivison, R. J. and Edmunds, M. G. 2003. Cold Dust in Kepler's Supernova Remnant. The Astrophysical Journal 597 , L33-L36. 10.1086/379639 |
Abstract
The timescales to replenish dust from the cool winds of asymptotic giant branch stars are believed to be greater than the timescales for dust destruction. In high-redshift galaxies, this problem is further compounded as the stars take longer than the age of the universe to evolve into the dust production stages. To explain these discrepancies, dust formation in supernovae (SNe) is required to be an important process, but until recently dust in supernova remnants (SNRs) has only been detected in very small quantities. We present the first submillimeter observations of cold dust in Kepler's SNR using the Submillimeter Common-User Bolometric Array. A two-component dust temperature model is required to fit the spectral energy distribution with Twarm ~ 102 K and Tcold ~ 17 K. The total mass of dust implied for Kepler is ~1 M—1000 times greater than previous estimates. Thus SNe, or their progenitors, may be important dust formation sites.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Subjects: | Q Science > QB Astronomy Q Science > QC Physics |
Uncontrolled Keywords: | dust, extinction; supernova remnants; supernovae: individual (Kepler) |
ISSN: | 0004-637X |
Last Modified: | 01 Dec 2022 10:18 |
URI: | https://orca.cardiff.ac.uk/id/eprint/1628 |
Citation Data
Cited 62 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |