Ajani, V., Baldi, M., Barthelemy, A., Boyle, A., Burger, P., Cardone, V. F., Cheng, S., Codis, S., Giocoli, C., Harnois-Déraps, J., Heydenreich, S., Kansal, V., Kilbinger, M., Linke, L., Llinares, C., Martinet, N., Parroni, C., Peel, A., Pires, S., Porth, L., Tereno, I., Uhlemann, C., Vicinanza, M., Vinciguerra, S., Aghanim, N., Auricchio, N., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C. J., Conversi, L., Corcione, L., Courbin, F., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillis, B., Grazian, A., Grupp, F., Hoekstra, H., Holmes, W., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Kümmel, M., Kitching, T., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., Mei, S., Mellier, Y., Meneghetti, M., Moresco, M., Moscardini, L., Niemi, S.-M., Nightingale, J., Nutma, T., Padilla, C., Paltani, S., Pedersen, K., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Stanco, L., Starck, J.-L., Tallada-Crespí, P., Taylor, A. N., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Andreon, S., Bardelli, S., Boucaud, A., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Fabbian, G. ![]() ![]() |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (7MB) | Preview |
Abstract
Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | EDP Sciences |
ISSN: | 0004-6361 |
Date of First Compliant Deposit: | 29 January 2024 |
Date of Acceptance: | 11 April 2023 |
Last Modified: | 28 Mar 2024 11:57 |
URI: | https://orca.cardiff.ac.uk/id/eprint/165896 |
Actions (repository staff only)
![]() |
Edit Item |