Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The mass-loss return from evolved stars to the large magellanic cloud. Ii. Dust properties for oxygen-rich asymptotic giant branch stars

Sargent, Benjamin A., Srinivasan, S., Meixner, M., Kemper, F., Tielens, A. G. G. M., Speck, A. K., Matsuura, M. ORCID: https://orcid.org/0000-0002-5529-5593, Bernard, J.-Ph., Hony, S., Gordon, Karl D., Indebetouw, R., Marengo, M., Sloan, G. C. and Woods, Paul M. 2010. The mass-loss return from evolved stars to the large magellanic cloud. Ii. Dust properties for oxygen-rich asymptotic giant branch stars. The Astrophysical Journal 716 (1) , 878–890. 10.1088/0004-637x/716/1/878

Full text not available from this repository.

Abstract

We model multi-wavelength broadband UBVIJHKs and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92−715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of −3.5, amin of 0.01 μm, and a0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L☉ and ∼36,000 L☉, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M☉ and ∼7 M☉. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 μm through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 × 10−9 M☉ yr−1 and 2.3 × 10−9 M☉ yr−1, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 × 10−6 M☉ yr−1 and 1.2 × 10−6 M☉ yr−1, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: American Astronomical Society
ISSN: 1538-4357
Date of Acceptance: 26 April 2010
Last Modified: 14 May 2024 12:45
URI: https://orca.cardiff.ac.uk/id/eprint/168039

Actions (repository staff only)

Edit Item Edit Item