Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

An empirical study on parameter-efficient fine-tuning for multimodal large language models

Zhou, Xiongtao, He, Jie, Ke, Yuhua, Zhu, Guangyao, Gutierrez Basulto, Victor ORCID: https://orcid.org/0000-0002-6117-5459 and Pan, Jeff Z. 2024. An empirical study on parameter-efficient fine-tuning for multimodal large language models. Presented at: 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), Bangkok, Thailand, 11-16 August 2024. Findings of the Association for Computational Linguistics: ACL 2024. Association for Computational Linguistics, pp. 10057-10084. 10.18653/v1/2024.findings-acl.598

[thumbnail of Parameter_Efficient_Multimodal_ACL2024.pdf]
Preview
PDF - Accepted Post-Print Version
Download (3MB) | Preview
Item Type: Conference or Workshop Item (Paper)
Status: Published
Schools: Schools > Computer Science & Informatics
Publisher: Association for Computational Linguistics
ISBN: 979-889176099-8
Related URLs:
Date of First Compliant Deposit: 17 June 2024
Date of Acceptance: 16 May 2024
Last Modified: 17 Feb 2025 14:45
URI: https://orca.cardiff.ac.uk/id/eprint/169851

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics