Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Bone of contention: Intra-element variability in remodelling of human femora based on histomorphometric and isotope analyses

de Gruchy, Yasmine A., Faillace, Katie E., Van de Vijver, Katrien, Schotsmans, Eline M. J., Seifert, Jerrod ORCID: https://orcid.org/0000-0002-6550-570X, Bricking, Adelle, Nederbragt, Alexandra J. and Madgwick, Richard ORCID: https://orcid.org/0000-0002-4396-3566 2024. Bone of contention: Intra-element variability in remodelling of human femora based on histomorphometric and isotope analyses. PLoS ONE 19 (6) , e0305089. 10.1371/journal.pone.0305089

[thumbnail of pone.0305089.pdf] PDF - Published Version
Download (2MB)

Abstract

The volume of human carbon (δ13C) and nitrogen (δ15N) isotope data produced in archaeological research has increased markedly in recent years. However, knowledge of bone remodelling, its impact on isotope variation, and the temporal resolution of isotope data remains poorly understood. Varied remodelling rates mean different elements (e.g., femur and rib) produce different temporal signals but little research has examined intra-element variability. This study investigates human bone remodelling using osteon population density and the relationship with carbon and nitrogen isotope data at a high resolution, focusing on variation through femoral cross-sections, from periosteal to endosteal surfaces. Results demonstrate considerable differences in isotope values between cross-sectional segments of a single fragment, by up to 1.3‰ for carbon and 1.8‰ for nitrogen, illustrating the need for standardised sampling strategies. Remodelling also varies between bone sections, occurring predominantly within the endosteal portion, followed by the midcortical and periosteal. Therefore, the endosteal portion likely reflects a shorter period of life closer to the time of death, consistent with expectations. By contrast, the periosteal surface provides a longer average, though there were exceptions to this. Results revealed a weak negative correlation between osteon population density and δ15N or δ13C, confirming that remodelling has an effect on isotope values but is not the principal driver. However, a consistent elevation of δ15N and δ13C (0.5‰ average) was found between the endosteal and periosteal regions, which requires further investigation. These findings suggest that, with further research, there is potential for single bone fragments to reconstruct in-life dietary change and mobility, thus reducing destructive sampling.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
History, Archaeology and Religion
Additional Information: License information from Publisher: LICENSE 1: URL: http://creativecommons.org/licenses/by/4.0/
Publisher: Public Library of Science
Date of First Compliant Deposit: 27 June 2024
Date of Acceptance: 22 May 2024
Last Modified: 27 Jun 2024 10:00
URI: https://orca.cardiff.ac.uk/id/eprint/170138

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics