Molendowska, Malwina, Palombo, Marco ORCID: https://orcid.org/0000-0003-4892-7967, Foley, Kieran G., Narahari, Krishna, Fasano, Fabrizio, Jones, Derek K. ORCID: https://orcid.org/0000-0003-4409-8049, Alexander, Daniel C., Panagiotaki, Eleftheria and Tax, Chantal M. W. ORCID: https://orcid.org/0000-0002-7480-8817 2024. Diffusion MRI in prostate cancer with ultra-strong whole body gradients. NMR in Biomedicine 10.1002/nbm.5229 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (5MB) | Preview |
Abstract
Diffusion-weighted MRI (dMRI) is universally recommended for the detection and classification of prostate cancer (PCa), with PI-RADS recommendations to acquire b-values of ≥1.4 ms/μm2. However, clinical dMRI suffers from a low signal-to-noise ratio (SNR) as the consequence of prolonged echo times (TEs) attributable to the limited gradient power in the range of 40–80 mT/m. To overcome this, MRI systems with strong gradients have been designed but so far have mainly been applied in the brain. The aim of this work was to assess the feasibility, data quality, SNR and contrast-to-noise ratio (CNR) of measurements in PCa with a 300 mT/m whole-body system. A cohort of men without and with diagnosed PCa were imaged on a research-only 3T Connectom Siemens MRI system equipped with a gradient amplitude of 300 mT/m. dMRI at high b-values were acquired using high gradient amplitudes and compared with gradient capabilities mimicking clinical systems. Data artefacts typically amplified with stronger gradients were assessed and their correction evaluated. The SNR gains and lesion-to-healthy tissue CNR were statistically tested investigating the effect of protocol and b-value. The diagnostic quality of the images for different dMRI protocols was assessed by an experienced radiologist using a 5-point Likert scale and an adapted PI-QUAL scoring system. The strong gradients for prostate dMRI allowed a significant gain in SNR per unit time compared with clinical gradients. Furthermore, a 1.6–2.1-fold increase in CNR was observed. Despite the more pronounced artefacts typically associated with strong gradients, a satisfactory correction could be achieved. Smoother and less biased parameter maps were obtained with protocols at shorter TEs. The results of this study show that dMRI in PCa with a whole-body 300-mT/m scanner is feasible without a report of physiological effects, SNR and CNR can be improved compared with lower gradient strengths, and artefacts do not negate the benefits of strong gradients and can be ameliorated. This assessment provides the first essential step towards unveiling the full potential of cutting-edge scanners, now increasingly becoming available, to advance early detection and diagnostic precision.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Psychology Cardiff University Brain Research Imaging Centre (CUBRIC) |
Publisher: | Wiley |
ISSN: | 0952-3480 |
Funders: | EPSRC, UKRI, Wellcome Trust |
Date of First Compliant Deposit: | 16 August 2024 |
Date of Acceptance: | 15 July 2024 |
Last Modified: | 15 Oct 2024 14:27 |
URI: | https://orca.cardiff.ac.uk/id/eprint/171330 |
Actions (repository staff only)
Edit Item |