| Bocquet, S., Grandis, S., Bleem, L. E., Klein, M., Mohr, J. J., Aguena, M., Alarcon, A., Allam, S., Allen, S. W., Alves, O., Amon, A., Ansarinejad, B., Bacon, D., Bayliss, M., Bechtol, K., Becker, M. R., Benson, B. A., Bernstein, G. M., Brodwin, M., Brooks, D., Campos, A., Canning, R. E. A., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, C., DeRose, J., Desai, S., de Haan, T., De Vicente, J., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flores, A. M., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gladders, M. D., Gruen, D., Gruendl, R. A., Harrison, I.  ORCID: https://orcid.org/0000-0002-4437-0770, Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Huang, N., Huff, E. M., James, D. J., Jarvis, M., Khullar, G., Kim, K., Kraft, R., Kuehn, K., Kuropatkin, N., Kéruzoré, F., Lee, S., Leget, P.-F., MacCrann, N., Mahler, G., Mantz, A., Marshall, J. L., McCullough, J., McDonald, M., Mena-Fernández, J., Miquel, R., Myles, J., Navarro-Alsina, A., Ogando, R. L. C., Palmese, A., Pandey, S., Pieres, A., Plazas Malagón, A. A., Prat, J., Raveri, M., Reichardt, C. L., Roberson, J., Rollins, R. P., Romer, A. K., Romero, C., Roodman, A., Ross, A. J., Rykoff, E. S., Salvati, L., Sánchez, C., Sanchez, E., Sanchez Cid, D., Saro, A., Schrabback, T., Schubnell, M., Secco, L. F., Sevilla-Noarbe, I., Sharon, K., Sheldon, E., Shin, T., Smith, M., Somboonpanyakul, T., Stalder, B., Stark, A. A., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Troxel, M. A., Tutusaus, I., Varga, T. N., von der Linden, A., Weaverdyck, N., Weller, J., Wiseman, P., Yanny, B., Yin, B., Young, M., Zhang, Y. and Zuntz, J.
      2024.
      
      SPT clusters with DES and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets.
      Physical Review D (particles, fields, gravitation, and cosmology)
      110
      
        (8)
      
      
      , 083509.
      10.1103/physrevd.110.083509   | 
| Preview | PDF
 - Accepted Post-Print Version Download (6MB) | Preview | 
      License URL: https://link.aps.org/licenses/aps-default-license
    
      
       
    
  
  
   
  
  
  
  
  
    
      License Start date: 3 October 2024
    
     
  
      
      Official URL: https://doi.org/10.1103/physrevd.110.083509
    
  
  
    Abstract
We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at
| Item Type: | Article | 
|---|---|
| Date Type: | Published Online | 
| Status: | Published | 
| Schools: | Schools > Physics and Astronomy | 
| Additional Information: | License information from Publisher: LICENSE 1: URL: https://link.aps.org/licenses/aps-default-license, Start Date: 2024-10-03 | 
| Publisher: | American Physical Society | 
| ISSN: | 2470-0010 | 
| Date of First Compliant Deposit: | 9 December 2024 | 
| Date of Acceptance: | 23 May 2024 | 
| Last Modified: | 09 Dec 2024 10:45 | 
| URI: | https://orca.cardiff.ac.uk/id/eprint/173064 | 
Actions (repository staff only)
|  | Edit Item | 

 
							

 Altmetric
 Altmetric Altmetric
 Altmetric