Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Learning the universe: GalactISM simulations of resolved star formation and galactic outflows across main-sequence and quenched galactic environments

Jeffreson, Sarah M. R., Ostriker, Eve C., Kim, Chang-Goo, Gensior, Jindra, Bryan, Greg L., Davis, Timothy A. ORCID: https://orcid.org/0000-0003-4932-9379, Hernquist, Lars and Hassan, Sultan 2024. Learning the universe: GalactISM simulations of resolved star formation and galactic outflows across main-sequence and quenched galactic environments. The Astrophysical Journal 975 (1) , 113. 10.3847/1538-4357/ad793f

[thumbnail of pdf.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

We present a suite of six high-resolution chemodynamical simulations of isolated galaxies, spanning observed disk-dominated environments on the star-forming main sequence, as well as quenched, bulge-dominated environments. We compare and contrast the physics driving star formation and stellar feedback among the galaxies, with a view to modeling these processes in cosmological simulations. We find that the mass loading of galactic outflows is coupled to the clustering of supernova explosions, which varies strongly with the rate of galactic rotation Ω = v circ/R via the Toomre length, leading to smoother gas disks in the bulge-dominated galaxies. This sets an equation of state in the star-forming gas that also varies strongly with Ω, so that the bulge-dominated galaxies have higher midplane densities, lower velocity dispersions, and higher molecular gas fractions than their main-sequence counterparts. The star formation rate in five out of six galaxies is independent of Ω and is consistent with regulation by the midplane gas pressure alone. In the sixth galaxy, which has the most centrally concentrated bulge and thus the highest Ω, we reproduce dynamical suppression of the star formation efficiency in agreement with observations. This produces a transition away from pressure-regulated star formation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Additional Information: License information from Publisher: LICENSE 1: URL: http://creativecommons.org/licenses/by/4.0/, Type: cc-by
Publisher: American Astronomical Society
ISSN: 0004-637X
Date of First Compliant Deposit: 30 October 2024
Date of Acceptance: 8 September 2024
Last Modified: 30 Oct 2024 10:30
URI: https://orca.cardiff.ac.uk/id/eprint/173525

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics