Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Comparison of breaking models in envelope-based surface gravity wave evolution equations

Liu, Yuxuan, Eeltink, Debbie, Tang, Tianning, Barratt, Dylan, Li, Ye, Adcock, Thomas and Van Den Bremer, Ton S. 2023. Comparison of breaking models in envelope-based surface gravity wave evolution equations. Physical Review Fluids 8 , 054803. 10.1103/PhysRevFluids.8.054803

[thumbnail of PhysRevFluids.8.054803.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (5MB) | Preview

Abstract

Wave breaking is the main mechanism that dissipates energy from ocean waves by wind. Its effects on the frequency spectrum cause a downshift of the spectral peak and dissipation of the total energy of the spectrum. Various reduced-form wave breaking models have been developed to capture wave breaking in envelope-based wave evolution equations for perturbed plane-wave systems, but their applicability to waves with a continuous spectrum has not been examined. In this paper we perform modified nonlinear Schrödinger equation simulations to study four existing wave breaking models and compare the results with new experimental data for breaking unidirectional wave groups. We first compare the different wave breaking models for perturbed plane-wave simulations and then examine their potential extension to waves with a continuous spectrum. We find that most existing models are able to model breaking in perturbed plane waves, but none produce the correct spectral dissipation for focused wave groups. We propose a modification to the breaking model by Kato and Oikawa [J. Phys. Soc. Jpn. 64, 4660 (1995)] in order to model breaking in focused wave groups. The modified model incorporates both a breaking criterion, which activates and deactivates the dissipation term proposed by Kato and Oikawa, and a heuristic spectral weighting function that is obtained by fitting to experimental data. The modified model also predicts breaking in perturbed plane waves well.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Schools > Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Publisher: American Physical Society
Date of First Compliant Deposit: 2 April 2025
Date of Acceptance: 12 April 2023
Last Modified: 07 Jul 2025 10:00
URI: https://orca.cardiff.ac.uk/id/eprint/177341

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics