Griffiths, Benjamin and Beynon, Malcolm James ![]() |
Abstract
Predictive accuracy, as an estimation of a classifier’s future performance, has been studied for at least seventy years. With the advent of the modern computer era, techniques that may have been previously impractical are now calculable within a reasonable time frame. Within this chapter, three techniques of resampling, namely, leave-one-out, k-fold cross validation and bootstrapping; are investigated as methods of error rate estimation with application to variable precision rough set theory (VPRS). A prototype expert system is utilised to explore the nature of each resampling technique when VPRS is applied to an example dataset. The software produces a series of graphs and descriptive statistics, which are used to illustrate the characteristics of each technique with regards to VPRS, and comparisons are drawn between the results.
Item Type: | Book Section |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Business (Including Economics) |
Subjects: | H Social Sciences > HD Industries. Land use. Labor > HD28 Management. Industrial Management Q Science > QA Mathematics Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Publisher: | IGI Global |
ISBN: | 9781599049519 |
Related URLs: | |
Last Modified: | 19 Oct 2022 10:38 |
URI: | https://orca.cardiff.ac.uk/id/eprint/25057 |
Actions (repository staff only)
![]() |
Edit Item |