Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion

Zheng, Dongling, Kille, Peter, Feeney, Graham P., Cunningham, Phil, Handy, Richard D. and Hogstrand, Christer 2010. Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion. BMC Genomics 11 , pp. 1-17.

PDF - Published Version
Download (2MB) | Preview


Background: Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results: Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that 'Developmental Process' was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes. There was also significant bias for annotations relating to development, cell cycle, cell differentiation, gene regulation, butanoate metabolism, lysine degradation, protein tyrosin phosphatases, nucleobase, nucleoside and nucleotide metabolism, and cellular metabolic processes. Within these groupings genes associated with diabetes, bone/cartilage development, and ionocyte proliferation were especially notable. Network analysis of the temporal expression profile indicated that transcription factors foxl1, wt1, nr5a1, nr6a1, and especially, hnf4a may be key coordinators of the homeostatic response to zinc depletion. Conclusions: The study revealed the complex regulatory pathways that allow the organism to subtly respond to the low-zinc condition. Many of the processes affected reflected a fundamental restructuring of the gill epithelium through reactivation of developmental programs leading to stem cell differentiation. The specific regulation of genes known to be involved in development of diabetes provides new molecular links between zinc deficiency and this disease. The present study demonstrates the importance of including the time-dimension in microarray studies.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Subjects: Q Science > Q Science (General)
Additional Information: Pdf uploaded in accordance with publisher's policy at (accessed 25/02/2014)
Publisher: BioMed Central
ISSN: 1471-2164
Date of First Compliant Deposit: 30 March 2016
Last Modified: 24 Jun 2017 09:02

Citation Data

Cited 45 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics