Utfeld, C., Laverock, J., Haynes, T. D., Dugdale, S. B., Duffy, J. A., Butchers, M. W., Taylor, J. W., Giblin, Sean ![]() |
Abstract
We report high-resolution, bulk Compton scattering measurements unveiling the Fermi surface of an optimally doped iron-arsenide superconductor, Ba(Fe0.93Co0.07)2As2. Our measurements are in agreement with first-principles calculations of the electronic structure, revealing both the X-centered electron pockets and the Γ-centered hole pockets. Moreover, our data are consistent with the strong three dimensionality of one of these sheets that has been predicted by electronic structure calculations at the local-density-approximation-minimum As position. Complementary calculations of the noninteracting susceptibility, χ0(q,ω), suggest that the broad peak that develops due to interband Fermi-surface nesting, and which has motivated several theories of superconductivity in this class of material, survives the measured three dimensionality of the Fermi surface in this family.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Subjects: | Q Science > QC Physics |
Publisher: | American Physical Society |
ISSN: | 1098-0121 |
Last Modified: | 21 Oct 2022 10:50 |
URI: | https://orca.cardiff.ac.uk/id/eprint/41507 |
Citation Data
Cited 31 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |