Vella, Pierre C., Dimov, Stefan Simeonov, Kolew, Alexander, Minev, Ekaterin, Popov, Krastimir Borisov, Lacan, Franck Andre ORCID: https://orcid.org/0000-0002-3499-5240, Griffiths, Christian Andrew, Hirshy, Hassan ORCID: https://orcid.org/0000-0003-0281-3681 and Scholz, Steffen Gerhard 2012. Bulk Metallic Glass based Tool-Making Process Chain for Micro- and Nano- Replication. Presented at: 4M 2012 - 9th International Conference on Multi-Material Micro Manufacture, Vienna, Austria, 9–11 October 2012. Published in: Noll, H., Adamovic, N. and Dimov, Stefan Simeonov eds. Proceedings of the 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing, p. 309. 10.3850/978-981-07-3353-7_300 |
Abstract
Existing and emerging micro-engineered products tend to integrate a multitude of functionalities into single enclosures/packages. Such functions generally require different length scale features. In practice, devices having complex topographies, which incorporate different length scale features cannot be produced by employing a single fabrication technology but by innovatively, integrating several different complementary manufacturing techniques in the form of a process chain. In order to design novel process chains that enable such function and length scale integration into miniaturised devices, it is required to utilise materials that are compatible with the various component manufacturing processes in such chains. At the same time, these materials should be able to satisfy the functional requirements of the produced devices. One family of materials, which can potentially fulfil these criteria, is bulk metallic glasses (BMGs). In particular, the absence of grain boundaries in BMGs makes them mechanically and chemically homogeneous for processing at all length scales down to a few nanometres. In this context, this research presents an experimental study to validate a novel process chain. It utilizes three complementary technologies for producing a Zr-based BMG replication master for a microfluidic device that incorporates micro and nano scale features. Then, to validate the viability of the fabricated BMG masters, they are utilized for serial replication of the microfluidic device by employing micro-injection moulding.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Business (Including Economics) Engineering |
Subjects: | T Technology > TS Manufactures |
Uncontrolled Keywords: | Micromilling, Hot embossing, Focused ion beam milling, Bulk metallic glasses, Process chains, Function and length scale integration |
Publisher: | Research Publishing |
ISBN: | 9789810733544 |
Last Modified: | 10 Sep 2023 16:52 |
URI: | https://orca.cardiff.ac.uk/id/eprint/48041 |
Actions (repository staff only)
Edit Item |