Dneprovskii, V. S., Zhukov, E. A., Muljarov, Egor A. ORCID: https://orcid.org/0000-0002-2878-4148 and Tikhodeev, S. G. 1998. Linear and nonlinear excitonic absorption in semiconducting quantum wires crystallized in a dielectric matrix. Journal of Experimental and Theoretical Physics 87 (2) , pp. 382-387. 10.1134/1.558671 |
Abstract
Spectra of linear and nonlinear absorption of GaAs and CdSe semiconducting quantum wires crystallized in a transparent dielectric matrix (inside chrysotile-asbestos nanotubes) have been measured. Their features are interpreted in terms of excitonic transitions and filling of the exciton phase space in the quantum wires. The theoretical model presented here has allowed us to calculate the energies of excitonic transitions that are in qualitative agreement with experimental data. The calculated exciton binding energies in quantum wires are a factor of several tens higher than in bulk semiconductors. The cause of this increase in the exciton binding energy is not only the size quantization, but also the “dielectric enhancement,” i.e., stronger attraction between electrons and holes owing to the large difference between permittivities of the semiconductor and dielectric matrix.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Subjects: | Q Science > QB Astronomy |
Publisher: | Nauka |
ISSN: | 1063-7761 |
Last Modified: | 24 Oct 2022 11:34 |
URI: | https://orca.cardiff.ac.uk/id/eprint/48563 |
Citation Data
Cited 12 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |