Könyves, V., André, Ph., Men'shchikov, A., Schneider, N., Arzoumanian, D., Bontemps, S., Attard, M., Motte, F., Didelon, P., Maury, A., Abergel, A., Ali, B., Baluteau, J.-P., Bernard, J.-Ph., Cambrésy, L., Cox, P., Di Francesco, J., di Giorgio, A. M., Griffin, Matthew Joseph ![]() ![]() ![]() |
Preview |
PDF
Download (2MB) | Preview |
Abstract
The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg2 area of the field imaged at 70–500 μm with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Uncontrolled Keywords: | ISM: individual objects: Aquila rift complex ; stars: formation |
Publisher: | EDP Sciences |
ISSN: | 0004-6361 |
Last Modified: | 16 May 2023 12:07 |
URI: | https://orca.cardiff.ac.uk/id/eprint/7309 |
Citation Data
Cited 201 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |