Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Distinguishing compact binary population synthesis models using gravitational wave observations of coalescing binary black holes

Stevenson, Simon, Ohme, Frank and Fairhurst, Stephen ORCID: https://orcid.org/0000-0001-8480-1961 2015. Distinguishing compact binary population synthesis models using gravitational wave observations of coalescing binary black holes. Astrophysical Journal 810 (1) , 58. 10.1088/0004-637X/810/1/58

[thumbnail of Stevenson_2015_ApJ_810_58.pdf]
Preview
PDF - Published Version
Download (1MB) | Preview

Abstract

The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Publisher: American Astronomical Society
ISSN: 0004-637X
Funders: STFC
Date of First Compliant Deposit: 20 April 2020
Date of Acceptance: 28 July 2015
Last Modified: 25 May 2023 04:49
URI: https://orca.cardiff.ac.uk/id/eprint/76304

Citation Data

Cited 73 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics