Foster, J. A., McWhirter, John ![]() |
Abstract
In this paper, a new algorithm for calculating the QR decomposition (QRD) of a polynomial matrix is introduced. This algorithm amounts to transforming a polynomial matrix to upper triangular form by application of a series of paraunitary matrices such as elementary delay and rotation matrices. It is shown that this algorithm can also be used to formulate the singular value decomposition (SVD) of a polynomial matrix, which essentially amounts to diagonalizing a polynomial matrix again by application of a series of paraunitary matrices. Example matrices are used to demonstrate both types of decomposition. Mathematical proofs of convergence of both decompositions are also outlined. Finally, a possible application of such decompositions in multichannel signal processing is discussed.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Engineering |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Uncontrolled Keywords: | Convolutive mixing; multiple-input–multiple-output (MIMO) channel equalization; paraunitary matrix; polynomial matrix QR decomposition (QRD); polynomial matrix singular value decomposition (SVD) |
Publisher: | IEEE |
ISSN: | 1053-587X |
Last Modified: | 17 Oct 2022 10:20 |
URI: | https://orca.cardiff.ac.uk/id/eprint/7737 |
Citation Data
Cited 41 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |