Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Small Microgrid stability and performance analysis in isolated island

Muhssin, Mazin T. ORCID: https://orcid.org/0000-0002-2780-3845, Cipcigan, Liana Mirela ORCID: https://orcid.org/0000-0002-5015-3334 and Obaid, Zeyad Assi 2015. Small Microgrid stability and performance analysis in isolated island. Presented at: 50th International Universities Power Engineering Conference (UPEC), Stoke-on-Trent, UK, 1-4 September 2015. Power Engineering Conference (UPEC), 2015 50th International Universities. IEEE, pp. 1-6. 10.1109/UPEC.2015.7339911

Full text not available from this repository.

Abstract

A generalized model of a Microgrid in an island mode is proposed for assessing the system power and frequency performances. This Microgrid (MG) includes a diesel backup generator along with a number of Distributed Energy Resources (DES): Wind Turbine Generator (WTG), Photovoltaic System (PV), Fly- Wheel Energy Storage system (FESS), and Battery Energy Storage System (BESS). Controlling the frequency deviation is posing a great challenge in stand-alone mode due to the mismatch between load demand and generation. Five different study cases were modelled in Matlab to investigate the performance and stability of the power system. Furthermore, two PD Fuzzy logic control plus Integral (PDFLC+I) act as supplementary controller were incorporated locally with diesel and storage elements in order to improve the robustness and safety of the system. Fuzzy rule and integral parameters were chosen to achieve fast response and small power and frequency deviation throughout step change in load profile. Classical PID controller was introduced for comparison purposes. The potential of using responsive charging electric vehicles (EVs) under three scenarios as a form of primary response was investigated. Simulation results showed that the decentralized controller eliminates the fluctuation effect of the wind turbine and stabilizes the system frequency. EVs can play important role in system primary frequency response

Item Type: Conference or Workshop Item (Paper)
Date Type: Publication
Status: Published
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Publisher: IEEE
Last Modified: 31 Oct 2022 10:01
URI: https://orca.cardiff.ac.uk/id/eprint/83238

Citation Data

Cited 14 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item