Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Microwave-assisted synthesis of defects metal-imidazolate-amide-imidate frameworks and improved CO2 capture

Behrens, Karsten, Mondal, Suvendu Sekhar, Nöske, Robert, Baburin, Igor A., Leoni, Stefano ORCID: https://orcid.org/0000-0003-4078-1000, Günter, Christina, Weber, Jens and Holdt, Hans-Jürgen 2015. Microwave-assisted synthesis of defects metal-imidazolate-amide-imidate frameworks and improved CO2 capture. Inorganic Chemistry 54 (20) , pp. 10073-10080. 10.1021/acs.inorgchem.5b01952

Full text not available from this repository.

Abstract

In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 Å). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat of adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 (R = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Chemistry
Subjects: Q Science > QD Chemistry
Publisher: American Chemical Society
ISSN: 0020-1669
Last Modified: 01 Nov 2022 09:23
URI: https://orca.cardiff.ac.uk/id/eprint/87765

Citation Data

Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item