Walker, Mathew W. and Lloyd-Evans, Emyr ![]() |
Abstract
Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Biosciences |
Publisher: | Elsevier |
ISSN: | 0091-679X |
Last Modified: | 21 Oct 2022 07:13 |
URI: | https://orca.cardiff.ac.uk/id/eprint/99435 |
Citation Data
Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |