Gray, William R., Rae, James W. B., Wills, Robert C. J., Shevenell, Amelia E., Taylor, Ben, Burke, Andrea, Foster, Gavin L. and Lear, Caroline H. ORCID: https://orcid.org/0000-0002-7533-4430 2018. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nature Geoscience 11 , pp. 340-344. 10.1038/s41561-018-0108-6 |
Preview |
PDF
- Accepted Post-Print Version
Download (5MB) | Preview |
Abstract
The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling–Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling–Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling–Allerød and contributed to the deglacial CO2 rise.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences |
Publisher: | Nature Research |
ISSN: | 1752-0894 |
Funders: | NERC |
Date of First Compliant Deposit: | 3 May 2018 |
Date of Acceptance: | 21 March 2018 |
Last Modified: | 08 Nov 2023 05:37 |
URI: | https://orca.cardiff.ac.uk/id/eprint/111179 |
Citation Data
Cited 78 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |