Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Strontium to calcium ratios in the marine gastropod Conus ermineus: Growth rate effects and temperature calibration

Sosdian, Sindia ORCID:, Gentry, D. Keith, Lear, Caroline Helen ORCID:, Grossman, Ethan L., Hicks, David and Rosenthal, Yair 2006. Strontium to calcium ratios in the marine gastropod Conus ermineus: Growth rate effects and temperature calibration. Geochemistry Geophysics Geosystems 7 (11) , Q11023. 10.1029/2005GC001233

[thumbnail of Sosdian 2006.pdf]
PDF - Published Version
Download (1MB) | Preview


Here we investigate the potential of Sr/Ca ratios in the marine gastropod Conus ermineus for reconstructing seawater temperatures. We present annually resolved records of Sr/Ca and δ 18O for four shells collected alive from the Flower Garden Banks National Marine Sanctuary in the Gulf of Mexico. Our results show that variations in Sr/Ca and δ 18O covary with the in situ seasonal temperature cycle. Sr/Ca and temperature are positively correlated, in contrast with the inverse relationship found in inorganically precipitated aragonite. The seasonal Sr/Ca variability is superimposed on a long-term trend of increasing Sr/Ca with age. Both the seasonal and long-term ontogenetic changes in Sr/Ca are associated with variations in growth rate, defined here as the shell linear extension rate (LER); the seasonal variability in LER is superimposed on a long-term decrease with ontogeny. Thus the covariance of Sr/Ca ratios with temperature and LER suggests that Sr incorporation is likely driven by temperature influence on growth rate, rather than by thermodynamic effects. Unlike the seasonal variability, the ontogenetic effect is characterized by inverse covariation between Sr/Ca and LER, suggesting that Sr/Ca variability is not controlled by growth rate alone, but probably by two different biomineralization mechanisms, one related to temperature and the other related to age. We use the seasonal Sr/Ca signal of four shells to construct a temperature calibration. To minimize the ontogenetic effects, we separate the records into juvenile and adult growth stages and calculate the Sr/Ca-temperature (T) relationships: Juvenile: Sr/Ca (mmol mol−1) = 0.042 (±0.008) * T (°C) + 0.24 (±0.21) (R2 = 0.66) Adult: Sr/Ca(mmol mol−1) = 0.072 (±0.014) * T (°C) − 0.05 (±0.34) (R2 = 0.68) Applying the calibration to a single specimen provides mean annual temperature estimates within ±1°C of the in situ temperature record but resolves the seasonal variability only within ±3.5°C. The large error in the seasonal estimates reflects the high variability among specimens. To reduce the uncertainty on seasonal temperatures, we propose combining records from multiple shells to generate an average temperature record. The potential of this approach needs, however, to be validated in other locations.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
Q Science > QE Geology
Uncontrolled Keywords: temperature; gastropod; Sr/Ca; Conus ermineus; mollusk; paleothermometer
Additional Information: Pdf uploaded in accordance with publisher's policy at (accessed 20/02/2014).
Publisher: American Geophysical Union.
ISSN: 1525-2027
Date of First Compliant Deposit: 30 March 2016
Last Modified: 03 Jun 2024 17:02

Citation Data

Cited 36 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics