Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

An EPR and ENDOR investigation of a series of Cu(II) transition metal complexes

Ritterskamp, Nadine 2019. An EPR and ENDOR investigation of a series of Cu(II) transition metal complexes. PhD Thesis, Cardiff University.
Item availability restricted.

[thumbnail of Ritterskamp N final thesis.pdf]
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (10MB) | Preview
[thumbnail of Cardiff University Electronic Publication Form] PDF (Cardiff University Electronic Publication Form) - Supplemental Material
Restricted to Repository staff only

Download (667kB)


Copper complexes have an enormous potential as cytotoxic compounds. Understanding the subtle interactions of these complexes and the variable modes of coordination with biologically relevant bases is mandatory from a biological perspective. However, in this thesis the more specific context is to investigate in detail the electronic and structural aspects of various copper complexes including [Cu(acac)2], [Cu(acac)(N-N)]+ and the multidentate ligand based complex [Cu(aNbN-aN)], and their interaction with target nitrogen bases. Therefore, an in-depth study on the configurational aspects of adducts formed between [Cu(acac)2] and imidazole (Im) was performed using ENDOR, HYSCORE and DFT calculations, providing a detailed analysis of the decoded trans-equatorial [Cu(acac)2(Im)n = 2] conformation. Based on N-imine coordinated complexes, a series of square planar Casiopeina Cu2+ complexes, consisting of one acetylacetonate and one diamine ligand, have been investigated by EPR and ENDOR spectroscopy. These diimine ligands were selected in light of the fact that the size of the aromatic diimine ligand may influence the therapeutic activity. Subtle but not neglectable electronic and structural changes of these [Cu(acac)(N-N)]+ complexes were detected by using X-,Q- and W-band CW EPR and 1H and 14N ENDOR measurements, revealing distortion and strain effects in the ligand system. Multidentate ligand based complexes [Cu(aN-bN-aN)] formed with e.g. di(2-picolyl)amine, tris(2-pyridylmethyl)amine and tris(2-aminoethyl)amine have been investigated by EPR and ENDOR spectroscopy. The focus of this investigation is to utilise ENDOR spectroscopy to examine copper complexes bearing inequivalent coordination nitrogen nuclei. Interesting electronical and structural features have been observed, illustrating the nature of the multidentate mixed nitrogen ligand.

Item Type: Thesis (PhD)
Date Type: Completion
Status: Unpublished
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Date of First Compliant Deposit: 8 October 2019
Last Modified: 29 Mar 2021 09:46

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics