Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Analysing online reviews to investigate customer behaviour in the sharing economy: The case of Airbnb

Lee, C.K.H., Tse, Ying Kei, Zhang, Minhao and Ma, Jie 2019. Analysing online reviews to investigate customer behaviour in the sharing economy: The case of Airbnb. Information Technology and People 33 (3) , pp. 945-961. 10.1108/ITP-10-2018-0475

Full text not available from this repository.


Purpose The purpose of this paper is to investigate attributes that influence Airbnb customer experience by analysing online reviews from users staying in London. It presents a text mining approach to identify a set of broad themes from the textual reviews. It aims to highlight the customers’ changing perception of good quality of accommodations. Design/methodology/approach This paper analyses 169,666 reviews posted by Airbnb users who stayed in London from 2011 to 2015. Hierarchical clustering algorithms are used to group similar words into clusters based on their co-occurrence. Longitudinal analysis and seasonal analysis are conducted for a more coherent understanding of the Airbnb customer behaviour. Findings This paper provides empirical insights about how Airbnb users’ mindset of good quality of accommodations changes over a five-year timespan and in different seasons. While there are common attributes considered important throughout the years, exclusive attributes are discovered in particular years and seasons. Research limitations/implications This paper is confined to Airbnb experiences in London. Researchers are encouraged to apply the proposed methodology to investigate Airbnb experiences in other cities and detect any change in customer perception of quality stay. Practical implications This paper offers implications for the prioritisation of customer concerns to design and improve services offerings and for alignment of services with customer expectations in the sharing economy. Originality/value This paper fulfils an identified need to examine the change in customer expectation across the timespan and seasons in the case of Airbnb. It also contributes by illustrating how big data can be used to uncover key attributes that facilitate the engagement with the sharing economy.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Business (Including Economics)
Subjects: H Social Sciences > H Social Sciences (General)
Publisher: Emerald
ISSN: 0959-3845
Last Modified: 02 Jul 2020 11:17

Citation Data

Cited 15 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item