Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The MALATANG survey: dense gas and star formation from high transition HCN and HCO+ maps of NGC253

Jiang, Xue-Jian, Greve, Thomas R., Gao, Yu, Zhang, Zhi-Yu, Tan, Qinghua, Grijs, Richard de, Ho, Luis C., Michalowski, Michal J., Currie, Malcolm J., Wilson, Christine D., Brinks, Elias, Ao, Yiping, Zhao, Yinghe, He, Jinhua, Harada, Nanase, Yang, Chentao, Jiao, Qian, Chung, Aeree, Lee, Bumhyun, Smith, Matthew W. L. ORCID:, Liu, Daizhong, Matsushita, Satoki, Shi, Yong, Imanishi, Masatoshi, Rawlings, Mark G., Zhu, Ming, Eden, David, Davis, Timothy A. ORCID: and Li, Xiaohu 2020. The MALATANG survey: dense gas and star formation from high transition HCN and HCO+ maps of NGC253. Monthly Notices of the Royal Astronomical Society 494 (1) , pp. 1276-1296. 10.1093/mnras/staa794

[thumbnail of staa794.pdf]
PDF - Published Version
Download (9MB) | Preview


To study the high-transition dense-gas tracers and their relationships to the star formation of the inner ∼2 kpc circumnuclear region of NGC 253, we present HCN J = 4−3 and HCO+ J = 4−3 maps obtained with the James Clerk Maxwell Telescope. Using the spatially resolved data, we compute the concentration indices r90/r50 for the different tracers. HCN and HCO+ 4–3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1–0 and the stellar component. The dense-gas fraction (fdense, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO+/CO) and the ratio R31 (CO 3–2/1–0) decline towards larger galactocentric distances, but increase with higher star formation rate surface density. The radial variation and the large scatter of fdense and R31 imply distinct physical conditions in different regions of the galactic disc. The relationships of fdense versus Σstellar, and SFEdense versus Σstellar are explored. SFEdense increases with higher Σstellar in this galaxy, which is inconsistent with previous work that used HCN 1–0 data. This implies that existing stellar components might have different effects on the high-J HCN and HCO+ than their low-J emission. We also find that SFEdense seems to be decreasing with higher fdense which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: Oxford University Press
ISSN: 0035-8711
Date of First Compliant Deposit: 20 March 2020
Date of Acceptance: 12 March 2020
Last Modified: 05 May 2023 21:12

Citation Data

Cited 4 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics