Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images

Cheong, Haris, Devalla, Sripad Krishna, Pham, Tan Hung, Zhang, Liang, Tun, Tin Aung, Wang, Xiaofei, Perera, Shamira, Schmetterer, Leopold, Aung, Tin, Boote, Craig ORCID:, Thiery, Alexandre and Girard, Michaël J. A. 2020. DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images. Translational Vision Science & Technology 9 (2) , 23. 10.1167/tvst.9.2.23

[thumbnail of i2164-2591-350-1-1971.pdf] PDF - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (6MB)


Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast—a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium (RPE) layer. The performance of DeshadowGAN was also compared with that of compensation, the standard for shadow removal. Results: DeshadowGAN decreased the intralayer contrast in all tissue layers. On average, the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating successful shadow removal across all depths. Output images were also free from artifacts commonly observed with compensation. Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a preprocessing step to improve the performance of a wide range of algorithms including those currently being used for OCT segmentation, denoising, and classification. Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Optometry and Vision Sciences
Publisher: Association for Research in Vision and Ophthalmology (ARVO)
ISSN: 2164-2591
Date of First Compliant Deposit: 27 April 2020
Date of Acceptance: 13 December 2019
Last Modified: 07 Nov 2022 10:07

Citation Data

Cited 12 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics