Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Optimisation of acoustic emission wavestreaming for structural health monitoring

McCrory, John P., Pearson, Matthew R. ORCID:, Pullin, Rhys ORCID: and Holford, Karen M. ORCID: 2020. Optimisation of acoustic emission wavestreaming for structural health monitoring. Structural Health Monitoring 19 (6) , pp. 2007-2022. 10.1177/1475921720912174

[thumbnail of Optimisation of Acoustic Emission Wavestreaming for Structural Health Monitoring - Accepted Manuscript for ORCA.pdf]
PDF - Accepted Post-Print Version
Download (1MB) | Preview


Structural health monitoring has gained wide appeal for applications with high inspection costs, such as aircraft and wind turbines. As the structures and materials used in these industries evolve, so too must the technologies used to monitor them. Acoustic emission is a passive method of detecting damage which lends itself well to structural health monitoring. One form of acoustic emission monitoring, known as wavestreaming, involves intermittently recording data for set periods of time and using the sequential recordings to detect changes in the state of the structure. However, at present, there is no standard method for selecting appropriate wavestream recording parameters, such as their length or their interval of collection. This article investigates a method of optimising acoustic emission wavestreaming for structural health monitoring purposes by introducing the novel concept of adjoining consecutive discrete acoustic emission hit signals to create synthetic wavestreams. To this end, a pre-notched 492 mm × 67.5 mm × 20 mm, 300M grade steel cantilever specimen was subject to cyclic loading and both acoustic emission hit data and conventional wavestreams were collected as a crack grew in the notched region; crack growth activity was also monitored using digital image correlation for comparison. To demonstrate the proposed optimisation process, four sets of synthetic wavestreams were created from the hit data, 0.25, 0.5, 1.0 and 1.5 s in length, and compared with the 1.5-s-long conventional wavestreams. The activity of the peak frequency and frequency centroid bands of interest within the conventional and synthetic wavestreams were examined to determine whether or not cracking activity could be inferred through them. Across comparisons of all data, it was found that the 0.5-s-long synthetic wavestreams contained enough information to identify the same trends as the conventional wavestreams for this application; thus, the use of synthetic wavestreams as a tool for selecting an appropriate wavestream recording length was demonstrated.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: SAGE
ISSN: 1475-9217
Date of First Compliant Deposit: 14 May 2020
Date of Acceptance: 16 February 2020
Last Modified: 06 Nov 2023 19:35

Citation Data

Cited 12 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics