Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Revealing the impact of heat generation using nanographene-based light-emitting electrochemical cells

Fresta, Elisa, Dosso, Jacopo, Cabanillas-Gonzalez, Juan, Bonifazi, Davide and Costa, Rubén D. 2020. Revealing the impact of heat generation using nanographene-based light-emitting electrochemical cells. ACS Applied Materials and Interfaces 12 (25) , pp. 28426-28434. 10.1021/acsami.0c06783

[thumbnail of CBN-ACS-MAIN-wohighlights.pdf]
PDF - Accepted Post-Print Version
Download (946kB) | Preview


Self-heating in light-emitting electrochemical cells (LECs) has been long overlooked, while it has a significant impact on (i) device chromaticity by changing the electroluminescent band shape, (ii) device efficiency because of thermal quenching and exciton dissociation reducing the external quantum efficiency (EQE), and (iii) device stability because of thermal degradation of excitons and eliminate doped species, phase separation, and collapse of the intrinsic emitting zone. Herein, we reveal, for the first time, a direct relationship between self-heating and the early changes in the device chromaticity as well as the magnitude of the error comparing theoretical/experimental EQEs—that is, an overestimation error of ca. 35% at usual pixel working temperatures of around 50 °C. This has been realized in LECs using a benchmark nanographene—that is, a substituted hexa-peri-hexabenzocoronene—as an emerging class of emitters with outstanding device performance compared to the prior art of small-molecule LECs—for example, luminances of 345 cd/m2 and EQEs of 0.35%. As such, this work is a fundamental contribution highlighting how self-heating is a critical limitation toward the optimization and wide use of LECs.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Publisher: American Chemical Society
ISSN: 1944-8244
Funders: European Union
Date of First Compliant Deposit: 16 June 2020
Date of Acceptance: 1 June 2020
Last Modified: 10 Oct 2021 11:19

Citation Data

Cited 13 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics