Mardle, Peter, Ji, Xiaochao, Wu, Jing, Guan, Shaoliang, Dong, Hanshan and Du, Shangfeng 2020. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Applied Catalysis B: Environmental 260 , 118031. 10.1016/j.apcatb.2019.118031 |
Preview |
PDF
- Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (989kB) | Preview |
Abstract
The enhanced performance of carbon nanotubes (CNTs) over carbon black as a catalyst support and the outstanding catalytic activities of one-dimensional (1D) Pt nanostructures endow them big potential for applications in fuel cells. However, the research has been mainly focused on the materials, and a combination of both 1D Pt nanostructures and CNTs to fabricate practical high power performance fuel cell electrodes still remains a challenge. In this work, we demonstrate catalyst electrodes from Pt nanorods grown on aligned nitrogen doped CNTs for proton exchange membrane fuel cell (PEMFC) applications. Short Pt nanorods are grown on CNTs deposited directly on 16 cm2 carbon paper gas diffusion layers (GDLs) via plasma enhanced chemical vapour deposition (PECVD) and nitrided using active screen plasma (ASP) treatment, which are directly employed as cathodes for H2/air PEMFCs. The thin open catalyst layer effectively enhances mass transfer performance and, with a less than half of the Pt loading, 1.23 fold power density is achieved as compared with that from commercial Pt/C catalysts. A better durability is also confirmed which can be attributed to the good structure stability of nanorods and the enhancement effects from the N-CNT support.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry Cardiff Catalysis Institute (CCI) |
Publisher: | Elsevier |
ISSN: | 0926-3373 |
Funders: | EPSRC |
Date of First Compliant Deposit: | 14 September 2020 |
Date of Acceptance: | 29 July 2019 |
Last Modified: | 02 Dec 2024 01:00 |
URI: | https://orca.cardiff.ac.uk/id/eprint/134833 |
Citation Data
Cited 47 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |