Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Improved volatile cargo retention and mechanical properties of capsules via sediment-free in situ polymerization with cross-linked poly(vinyl alcohol) as an emulsifier

Zhang, Yan, Mustapha, Abdullah Naseer, Zhang, Xiaotong, Baiocco, Daniele, Wellio, Gilmore, Davies, Thomas, Zhang, Zhibing and Li, Yongliang 2020. Improved volatile cargo retention and mechanical properties of capsules via sediment-free in situ polymerization with cross-linked poly(vinyl alcohol) as an emulsifier. Journal of Colloid and Interface Science 568 , pp. 155-164. 10.1016/j.jcis.2020.01.115

[thumbnail of PP.pdf]
Preview
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview

Abstract

Hypothesis It is hypothesized that poly(vinyl alcohol) (PVOH) as an emulsifier destabilizes the insoluble molecular aggregates by increasing interparticle interactions and their tendency toward agglomeration into large particle aggregates during the encapsulation process of one-step in situ polymerization. Porosity of capsule shells is expected to decrease with reducing agglomeration tendency to allow dense packing of smaller insoluble aggregates. Cross-linking the polymer network further reduces shell permeability to improve the retention of volatile cargos. PVOH also modifies the short-range order of polymer network to bestow improved mechanical properties in addition to the shell thickening effect at appropriate synthesis conditions. Experiments PVOH was used to stabilize a heptane-in-water emulsion as a template for producing capsules via one-step in situ polymerization. Shell morphologies at different PVOH concentrations were compared. Physical freeze-thawing and chemical cross-linking were adopted separately to synthesize capsules with a volatile cargo, and its retention was characterized qualitatively by a solvatochromism-based fluorescent method and quantitative payload calculation. Mechanical properties of capsules were tested with micromanipulation. The effect of graphene oxide (GO) impregnation into capsules was studied with various co-emulsifiers. Findings When PVOH alone was used as the emulsifier for capsule synthesis, the higher its concentration, the more porous the shell structure was. At very low concentrations, visible pores were eliminated. Freeze-thaw cycles reduced the permeability of capsule shells when visible pores were absent. Chemical cross-linking with poly(acrylic acid) (PAA) significantly improved the retention of volatile cargo heptane. PVOH substantially reduced polymer sediment during capsule synthesis, which eliminated the tedious centrifugation procedure that normally would have followed. Superior mechanical strength of capsules was achieved with PAA cross-linked PVOH at appropriate conditions. The impregnation of aqueously dispersed GO into capsules was also promoted by using PVOH but not hydrocolloid emulsifiers.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Cardiff Catalysis Institute (CCI)
Publisher: Elsevier
ISSN: 0021-9797
Date of First Compliant Deposit: 14 September 2020
Date of Acceptance: 28 January 2020
Last Modified: 07 Nov 2023 21:12
URI: https://orca.cardiff.ac.uk/id/eprint/134837

Citation Data

Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics